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Preface

Welcome to my magnum opus! :-) I've written a number of
books, but consider this one to be the most important.

Subtlety in the Title

Let’s start with the title of this book, Powered by Linear Al-
gebra: The central role of matrices and vector spaces in Data
Science. It’s important to understand why the title is NOT
“Linear Algebra for Data Scientists.” That latter would wrongly
connote that people in Data Science (DS)will first learn linear
algebra purely as a branch of math in this book, with no hint
of connections to DS, then apply that knowledge in subsequent
DS courses. Instead, the goal in the title is to emphasize the
fact that:

Linear algebra is absolutely fundamental to the
Data Science field. For us data scientists, it is “our’
branch of math. Almost every concept in this book
is first motivated by a Data Science application.
Mastering this branch of math, which is definitely
within the reach of all, pays major dividends.

)

Philosophy

I learned very early the difference between knowing the name
of something and knowing something — physicist Richard Feyn-
man

.1t felt random. “Follow these steps and you get the result you
are looking for.” But why does it work? What possessed you
to follow this path as opposed to any other? How might I have

11



come up with this myself? — comment by a reader of a famous
linear algebra book

This book does not allow rote memorization, merely “knowing
the name of something.” The focus on How? and Why? is on
every page.

A fundamental philosophy of my book here is to avoid reader
frustration. It’s easy to define, say the dimension of a vector
subspace, but that’s definitely not enough. What is the under-
lying intuition? Why is the concept important, especially in
Data Science?

The presentation of each concept in this book begins with a
problem to be solved, almost always from Data Science, then
leading up to a linear algebra solution. Basically, the math
sneaks up on the reader, who suddenly realizes they’ve just
learned a new general concept! And the reader knows where the
concept fits into the Big Picture, and can distill the abstraction
into an intuitive summary.

Examples:

e In Chapter 1, we use Markov chain transition matrices
and network graph models (e.g. social networks) to moti-
vate the notion of a matrix and matrix multiplication. An
interest in finding the stationary distribution of a Markov
chain then leads to the concept of matrix inverses. (Lin-
ear models are presented later, after some groundwork is
laid.)

e The chapter on matrix rank starts with a dataset right
off the bat, and shows that R’s linear model function
Im fails if categorical variables are fully specified. This
motivates the notion of rank, and the dataset dovetails
with the theory throughout the chapter, which culminates
in a proof that row rank equals column rank.

e The chapter on eigenanalysis begins with explaining the
goals of PCA (with a real dataset). We derive the first
PC as a constrained maximization of variance, and be-
hold! — the solution turns out to have the form Az = A\x!

12
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So eigenanalysis comes from solving a Data Science prob-
lem. PCA is later covered in detail in the following chap-
ter, but with this motivation we develop the properties of
eigenvalues and eigenvectors in the current chapter.

Who Is This Book For?

Of course the book should work very well as a classroom text-
book. If a Data Science or Statistics program requires linear
algebra offered by a Math Department, the mathematical con-
tent of this book should be similar to that math course, but
with much better student motivation due to the Data Science
emphasis of the book. The “applications first” approach is key
to that motivational power.

The applications-centered nature of the book should make
teaching the course more rewarding for instructors as well, and
the use of Quarto enables easy conversion to Powerpoint by
instructors.

I also hope the book’s emphasis on the How? and Why? espe-
cially appeals to do-it-yourselfers, those whose engagement in
self-study is motivated by intellectual curiosity rather than a
course grade.

Prerequisite Background

Basic data science:

e Calculus, e.g. derivatives as rates of change and slopes of
tangent lines.

e Basics of random variables, e.g. density functiopns, ex-
pected value and variance.

e Some exposure to R is recommended, but the text can be
read without it.

13

For a quick, painless introduction to
R, see my fasteR tutorial, say the

first 8 lessons.


https://github.com/matloff/fasteR

The Role of Math (and R)

Earlier in this Preface, I said, “If a Data Science or Statistics
program requires linear algebra offered by a Math Department,
the mathematical content of this book should be similar to that
math course...” So, the mathematics is definitely here, but one
might also say that this book is “mathematical but not overly
theoretical.”

Theory:

Theorems are mainly limited to results with practical impor-
tance. Among the Your Turn exercises at the end of each chap-
ter, many of the ones requiring proofs are simple, of the “one
liner” type. But the subject matter is indeed mathematical.
Students are indeed expected to read and understand proofs,
just as with the Mathematics Department course.

Active reading:

No sections are designated as “starred,” i.e. reserved for the
more mathematically adept readers. I believe all material in
the book is within reach of any reader who did reasonably solid
work in their calculus courses. But active participation on the
part of the reader is key.

For instance, Chapter Chapter 4 is on very concrete topics and
the reader hopefully will find the “3-dimensional bell shape”
of the multivariate distribution family intriguing. Yet, due to
an overloading for the term covariance in statistics, the reader
must always actively keep in mind whether it is scalar or vector
covariance being discussed.

As another example, Section Section 10.3 is a bit abstract and
involves switching back and forth between random variables
and members of a certain vector space, but it is presented with
intuitive motivation and simple, concrete examples. Moreover,
the material is motivated by culminating in an applied topic
of major societal relevance. The patient, active reader who
keeps in mind that certain entities here have dual roles will be
rewarded with a plethora of insights into inner product spaces,
and again, any successful “calculus graduate” should find this
attainable, even eliciting an empowered feeling. For this reason,
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this section is not “starred,” nor are the other parts of the book
so designated.

Not a “how to do linear algebra in R” book:

The goal is to develop in the reader mathematical skill and
intuition into this powerful tool, rather than coding of linear
algebra methods. Thus the many R examples are meant to
make the mathematical concepts concrete, not as an “how to
do linear algebra in R” book. In the software context, the
Feynman quote above might be, “There is a difference between
knowing how to use code libraries for something and knowing
the core nature of that thing.” That said, the code examples
do serve a vital role.

Not intended as an “easier” wversion of your Math Dept.
course:

The applied nature of the book is a double-edged sword. 1t is has
high value as a motivator, but understanding applications is ac-
tually more challenging than a purely mathematical treatment,
not less so. Math is more crisply-defined, while applications
can be “fuzzy”” Among the Your Turn exercises, many of the
applied ones are somewhat open-ended, and they tend to be
wordier than the theory ones. But often these are the ones
that develop genuine understanding of the subject.

In other words, the book is intended to arm students with usable
practical insights, rather than merely satisfying some curricular
requirement that will be quickly forgotten. Hence the needs for
(a) developing student intuition and (b) nonpassive learning are
paramount (as they should be in any Data Science course).

R Packages Used

dsld
ellipse
glmnet
igraph
imager
networkdata

15



pracma
qeML
regclass
WackyData

Data Availabilty

The datasets used are included with the above packages.

Web Site

github.com/matloff/WackyLinear Algebra

Edition Number

Currently 1.0.0. Correction of typos etc. will usually increment
the third digit.

Permission to Copy

This work is licensed under Creative Commons Zero v1.0 Uni-
versal.

Thanks

I deeply appreciate feedback from: Mike Hannon, Nick Knuep-
pel, Joe Rickert and Noah Perry.
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2 Matrices and Vectors
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1 Goals of this chapter:

The two main structures in linear algebra are matrices and
vector spaces. We begin the book with the former, intro-
duced in this chapter, motivating matrix multiplication
and presenting several applications.

In this chapter, we will take as our main application Markov
chains, a statistical model having wide applications in medicine,
economics and so on. The notion is very simple to explain, thus
making it a good choice for introducing matrices.

2.1 A Random Walk Model

Let’s consider a random walk on {1,2,3,4,5} in the number line.
Time is numbered 1,2,3,.. Our current position is termed our
state. The notation X, = i means that at time k we are in
state/position i.

Our rule will be that at any time k, we flip a coin. If we are
currently at position i, we move to either i+1 or i-1, depending
on whether the coin landed heads or tails. The exceptions are
k =1 and k = 5, in which case we stay put if tails or move to
the adjacent position if heads.

We can summarize the probabilities with a matriz, a two-
dimensional array:

05 05 0 0 O

05 005 0 0

P = 0 05 0 05 O
0 0 05 0 05

0 0 0 05 05

(2.1)

For instance, look at row 2. There are 0.5 values in columns 1
and 3, meaning there is a 0.5 chance of a move 2 — 1, and a
0.5 chance of a move 2 — 3.

We use a subscript 1 here in P, meaning “one step.” We go
from, say, state 2 to state 1 in one step with probability 0.5. P;

18



is called the one-step transition matriz (or simply the transition
matriz) for this process.

Note that each row in a transition matrix must sum to 1. After
all, from state i we must go somewhere.

What about the two-step transition matrix P,? For instance,
what should be in the row 3, column 1 position in that matrix?
In other words, if we start at position 3, what is the probability
that we go to position 1 in two steps? This would happen via
two tails flips of the coin. The probability of that is 0.5% = 0.25.
So the row 3, column 1 element in P, is 0.25. On the other hand,
if from state 3 we flip tails then heads, or heads then tails, we
are back to state 3. So, the row 3, column 3 element in P, is
0.25 4+ 0.25 = 0.5.

The reader should verify the correctness here:

0.5 025 0.25 0 0

025 0.5 0 0.25 0

P,=1 025 0 05 0 0.25
0 0.25 0 05 025

0 0 025 025 0.5

Well, finding two-step transition probabilities would be tedious
in general, but it turns out that is a wonderful shortcut: Matrix
multiplication. We will cover this in the next section, but first
a couple of preliminaries.

The above random walk is a Markov chain. The Markov Prop-
erty says that the system “has no memory.” If say we land at
position 2, we will go to 1 or 3 with probability 1/2 no matter
what the previous history of the system was; it doesn’t matter
how we got to state 3. That in turn comes in this example from
the independence of the successive coin flips.

Notation: Individual elements of a matrix are usually written
with double subscripts. For instance, ays will mean the row 2,
column 5 element of the matrix A. If say A has more than 9
rows, its row 11, column 5 element is denoted by a,; 5, using
the comma to avoid ambiguity.

19



2.2 Vectors

Matrices are two-dimensional arrays. One-dimensional arrays
are called vectors, either in row or column form, e.g.

u=(12,5,13)
and
12
u = 5
13

Please note:

e Vectors may also be viewed as one-row or one-column
matrices.

¢ When not otherwise stated, the term “vector” will mean
column form.

e The term scalar simply means a number, rather than a
matrix or vector. It will be used quite frequently in this
book.

2.3 Addition and Scalar Multiplication

Vectors of the same length may be summed, in elementwise
form, e.g.

12 -3 9
5 | + 6 | = 11
13 18.2 31.2

Similarly, two matrices may be added, again in elementwise
fashion, provided the number of rows is the same for both, as
well as the same condition for number of columns.

Vectors and matrices can be multiplied by scalars, again ele-
mentwise, e.g.

20



o3 ()= (33

2.4 Matrix-Matrix Multiplication

This is the most fundamental operation in linear algebra. It is
defined as follows:

Given matrix A of k£ rows and m columns and ma-
trix B of m rows and r columns, the product C' =
AB is a k x r matrix, whose row ¢, column j element
is

ailblj + a‘i262j + ...+ azmbm]

This is the “dot product” of row i of A and column
j of B: Find the products of the paired elements in
the two vectors, then sum.

For example, set

= Ot
== N

—=
S~

and

5 —1
B=]1 0
0 8

Let’s find the row 2, column 2 element of C = AB. Again, that
means taking the dot product of row 2 of A and column 2 of
B, which we’ve highlighted below.

and

21
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5 —1
B=|1 0
0 38

The value in question is then
1(-1)+1(0)+1(8) =7
Let’s check it, with R:

a <- rbind(c(5,2,6),c(1,1,1))
b <- cbind(c(5,1,0),c(-1,0,8))
a %*% b

[,11 [,2]
[1,] 27 43
[2,] 6 7

The rbind and cbind functions (“row bind” and “column
bind”) are very handy tools for creating matrices. The reader
should make sure to check the other elements by hand.

@ Tip 1

Always keep in mind that in the matrix product AB, the
number of rows of B must equal the number of columns
of A. The two matrices are then said to be conformable.

2.5 The ldentity Matrix

The identity matriz I of size n is the n X n matrix with 1s on
the diagonal and Os elsewhere. Here is the one for n = 2:

(0 1)

Identity matrices are multiplicative identities, i.e. they simply
copy the companion factor when multiplied: /B = B and Al =
A for any conformable A and B.
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2.6 Application to Markov Chain Transition
Matrices

Now let’s return to the question of how to easily compute P,
the two-step transition matrix. It turns out that:

Let P denote the transition matrix of a (finite-state)
Markov chain. The k-step transition matrix is P*.

At first, this may seem amazingly fortuitous, but it makes sense
in light of the “and/or” nature of the probability computations
involved. Recall our computation for the row 1, column 2 ele-
ment of P, above. From state 1, we could either stay at 1 for
one flip, then move to 2 on the second flip, or we could go to 2
then return to 1. Each of these has probability 0.5, so the total
probability is

(0.5)(0.5) + (0.5)(0.5)

But this is exactly the form of our “dot product” computation
in the definition of matrix multiplication,

a;1bin + @by + oo+ 10y

Then P? stores the 3-step probabilities and so on.

Statisticians and computer scientists like to look at the asymp-
totic behavior of systems, meaning what happens to a quantity
when time or size or some other value grows. Let’s see where
we might be after say, 6 steps:

matpow <- function(m,k) {
nr <- nrow(m)
tmp <- diag(nr) # identity matrix
for (i in 1:k) tmp <- tmp %*% m
tmp

pl <- rbind(c(0.5,0.5,0,0,0), c(0.5,0,0.5,0,0), c(0,0.5,0,0.5,0),
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c(0,0,0.5,0,0.5), ¢(0,0,0,0.5,0.5))

matpow (p1l,6)

[,1] [,2]

[,3] [,4] [,5]

[1,] 0.312500 0.234375 0.234375 0.109375 0.109375
[2,] 0.234375 0.312500 0.109375 0.234375 0.109375
[3,] 0.234375 0.109375 0.312500 0.109375 0.234375
[4,] 0.109375 0.234375 0.109375 0.312500 0.234375
[5,] 0.109375 0.109375 0.234375 0.234375 0.312500

So for instance if we start at position 2, there is about an 11%
chance that we will be at position 3 at time 6. What about

time 257

matpow(p1l,25)

[,1] [,2]
[1,] 0.2016179 0.2016179
[2,] 0.2016179 0.1993820
[3,] 0.1993820 0.2016179
[4,] 0.1993820 0.1980001
[5,1 0.1980001 0.1993820

[,3] [,4] [,5]
0.1993820 0.1993820 0.1980001
0.2016179 0.1980001 0.1993820
0.1980001 0.2016179 0.1993820
0.2016179 0.1993820 0.2016179
0.1993820 0.2016179 0.2016179

So, no matter which state we start in, at time 25 we are
about 20% likely to be at any of the states. In fact, as time
n goes to infinity, this probability vector becomes exactly
(0.20,0.20,0.20,0.20,0.20). It will be shown below that the
vector of long-run state probabilities v is the solution of

Pv=v (2.2)

where P is the transition matrix for the Markov chain.
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2.7 Network Graph Models

There has always been lots of analysis of “Who is connected to
whom,” but activity soared after the advent of Facebook and
the film, A Social Network. See for instance Statistical Analysis
of Network Data with R by Eric Kolaczy and Gabor Csardi. As
the authors say,

The oft-repeated statement that “we live in a
connected world” perhaps best captures, in its
simplicity why networks have come to hold such
interest in recent years. From on-line social net-
works like Facebook to the World Wide Web and
the Internet itself, we are surrounded by examples
of ways in which we interact with each other.
Similarly, we are connected as well at the level
of various human institutions (e.g., governments),
processes (e.g., economies), and infrastructures
(e.g., the global airline network). And, of course,
humans are surely not unique in being members of
various complex, inter-connected systems. Looking
at the natural world around us, we see a wealth of
examples of such systems, from entire eco-systems,
to biological food webs, to collections of inter-acting
genes or communicating neurons.

And of course, at the center of it all is a matrix! Here is why:

2.8 Example: Karate Club

Let’s consider the famous Karate Club dataset:
# remotes::install_github("schochastics/networkdata")
library(networkdata)

data(karate)
library(igraph)

Calling
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plot(karate)

then yields

Figure 2.1: Karate Club network

There is a link between node 13 and node 4, meaning that club
members 13 and 4 are friends. This graph is undirected, as

. . . . friendship is mutual. Many graphs
The adjacency matriz has row i, column j element as 1 or 0, b Y srap

. . . . . are directed, but we will assume
according to whether a link exists between nodes i and j. re durected, DL we wh o

undirected here.

adjK <- as_adjacency_matrix(karate)
adjK

34 x 34 sparse Matrix of class "dgCMatrix"
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adjk[13,4]

(11 1

Accordingly, row 13, column 4 does have a 1 entry, consistent
with what we saw in the picture.
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2.9 The Role of Matrix Multiplication in
Network Graph Models

As is the case with Markov transition matrices, powers of an ad-
jacency matrix can yield valuable information. In the Markov
case, multiplication gives us sums of paired products, comput-
ing probabilities. What about the network graph case?

Here products are of the form 0 x 0, 0 x 1, 1 x 1, If there
is a nonzero entry m in row 4, column j of the square of the
adjacency matrix, that means there were m 1 x 1 products in
that sum, which would correspond to m paths. Let’s look into
this.

adjK2 <- adjK %*% adjK

We see that adjK2[11,1] is 2. Inspection of adjK shows that
its row 11, columns 6 and 7 are 1s, and that rows 6 and 7,
column 1 are 1s as well. So there are indeed two two-hop paths
from node 11 to node 1, specifically 11 - 6 — 1 and 11 — 7 —
1. Thus the 2 we see in adjK2[11,1] was correct.

In other words, A* for a network adjacency matrix A shows the
number of paths from each node to each of the others.

Actually, what is typically of interest is connectivity rather than
number of paths. For any given pair of nodes, is there a mul-
tihop path between them? Or does the graph break down to
several “islands” of connected nodes?

Again consider the Karate Club data. Since there are 34 nodes
in this graph, if the graph is connected, there should be a path
that hits all of them with at most 33 hops. Let’s see what paths
of this length give us.

u <- matpow(adjkK,33)
sum(u == 0)

[11 o
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So, in that graph representing paths of 33 links, there are no
0Os. In this graph, every pair of nodes has a path between them.
The graph is connected.

In general, determining whether a graph is connected requires
paying attention to things such as cycles. The details are be-
yond the scope of this book.

2.10 Recommender Systems

If you inquire about some item at an online store, the software
will also present you with some related items that it thinks
would be of interest to you. How does the software make this
guess?

Clearly, the full answer is quite complex. But we can begin to
see the process by looking at some real data.

site <- 'http://files.grouplens.org/datasets/movielens/ml-100k/u.data’
q <- read.table(site)

names(q) <- c('user', 'movie', 'rating', 'userinfo')

head(q)

user movie rating wuserinfo

1 196 242 3 881250949
2 186 302 3 891717742
3 22 377 1 878887116
4 244 51 2 880606923
5 166 346 1 886397596
6 298 474 4 884182806

We see for instance that user 22 gave movie 377 a rating of 1.
If we want to know some characteristics of this user, his/her ID
is 878887116, which we can find in the file u.user at the above
URL. Other files tell us more about this movie, e.g. its genre,
and so on.

Let’s explore the data a bit:

How many users and movies are in this dataset?
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length(unique (q$user))

[1] 943

length(unique (g$movie))

[1] 1682

How many other users rated movie number 2427

sum(q$movie == 242)

(1] 117

Did user 22 rate movie 234, for instance?

which(q$user == 22 & q$movie == 234)

integer(0)

Now we can begin to see a solution to the recommender problem.
Say we wish to guess whether user 22 would like movie 234.

We could look for other users who have rated many of the
same movies as user 22, and whose ratings of those movies were
generally similar to those of user 22. We would then focus on
the ones who rated movie 234. We could average those ratings
to obtain a predicted rating for movie 234 by user 22.

In order to assess interuser similarity of the nature described
above, we might form a matrix .S, as follows. There would be
943 rows, one for each user, and 1682 columns, one for each
movie. The element in row ¢, column j would be the rating
user ¢ gave to movie j. Most of the matrix would be Os.

The point of constructing S is that determining the similarity

of users becomes a matter of measuring similarity of rows of S.

This paves the way to exploiting the wealth of matrix-centric
methodology we will develop in this book.
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2.11 Matrix Algebra

2.11.1 Other basic operations
Matrix multiplication may seem odd at first, but other opera-
tions are straightforward.

Addition: We just add corresponding elements. For
instance,

A+B:<5 22 12)

4 84 —0.2

We do have to make sure the addends match in terms of num-
bers of rows and columns, 2 and 3 in the example here.

Scalar multiplication: Again, this is simply elementwise.
E.g. with A as above,

75 3 9
L5A= ( 1.5 39 —1.8 )

Distributive property:

For matrices A, B and C of suitable conformability (A and B
match in numbers of rows and columns, and their common num-
ber of columns matches the number of rows in C), we have

(A+B) C = AC + BC
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2.11.2 Matrix transpose

This is a very simple but very important operation: We merely
exchange rows and columns of the given matrix. For instance,
with A as above, its transpose (signified with “””), is

5 1
A=12 26
6 —1.2

Some books use the notation A* or AT instead of A’. The R
function for transpose is t().

It can be shown that if A and B are conformable, then

(AB) =B'A’
For some matrices C, we have C’ = C'. We then say that C is
symmetric.

We will often write a row vector in the form (a,b,c,..). So
(5,1,88) means the 1x3 matrix with those elements. If we wish
to write a column vector within some text, we use transpose,
so that for instance (5,1,88)” means a 3x1 matrix.

2.11.3 Trace of a square matrix

The trace of a square matrix A is the sum of its diagonal ele-
ments, tr(A) = 2?21 A;;. This measure has various properties,
some obvious (the trace of the sum of two matrices is the sum
of their traces), and some less so, such as:

Theorem 2.1. Suppose A and B are square matrices of the
same size. Then

tr(AB) = tr(BA) (2.3)

Proof. See Your Turn problem below. O
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And furthermore:

Corollary 2.1. Trace is invariant under circular shifts,

e.g. UVW , VWU and WUV all have the same trace.

2.12 Partitioned Matrices: an Invaluable
Visualization Tool

Here, “visualization” is not a reference to graphics but rather
to highlighting certain submatrices.

@ Tip 2: A Crucial Tool

Matrix partitioning is amazingly powerful, given its utter
simplicity. It compactifies matrix algebra, making com-
plex expressions easier to visualize and discuss.

The techniques introduced in this section will be used re-
peatedly throughout the book. Readers should spend
extra time here, making sure the compact representa-
tions make sense.

Specifics now follow:

2.12.1 How partitioning works

Consider a matrix-matrix product M Q). The use of partitioning
works on “pretending”:

Matrix Partitioning

1. Partition M and @ into groups of contiguous
rows or columns, respectively. Let g,, and g,
denote the number of groups. (A group size of
1 is permissible.)

2. Enter Pretend Mode: Pretend that each group
is a number. Now M and @ look like vectors,
of lengths g,,, and g,,.

3. Go ahead and “multiply” the two “vectors.”
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4. Re-enter Reality Mode. Replace the elements
of the “product” in step 3 by the groups’ actual
rows and columns.

5. Marvel at the fact that this bit of “alchemy”
actually produces the correct matrix equation.

It will be easier to see how this works by considering the special
case of @ being a vector v. Of course, that means that v is a

column vector (vy,v,,...,v,)" . Say M is of size m x n.

Now, we ask for the reader’s patience here, as we will move
back and forth between a symbolic “pretend world” and reality.
We promise, it will be worth it.

Let’s denote column j of M by c;. Write M symbolically as

M = (¢, ¢qy.v¢,)

so the group size in this case is 1, with n groups of columns.
Treating the ¢; as “numbers,” again symbolically, M looks like
a 1 x n matrix. We temporarily pretend it’s 1 X n even though
it’s actually m x n, and that the ¢; are numbers, even though
they are vectors. Then the “product”

Muv = (¢q,Cqy ...y Cp) = 0,61 + VyCy + ... + U,,C,,

looks, once again symbolically like the product of 1 xn and nx1
vectors, a dot product, resulting in a 1 x 1, i.e. a number.

The wonderful thing about all this is that if we now stop pre-
tending, we get the right answer! If we now treat the c; for
what they really are, column vectors, then the relation

Mv =wvic; +v9¢9 + ... + 1,0,

M is indeed equal to this sum of scalars times its columns. Let’s
check with a specific example.
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For instance, take

A= ( ? 2.6 —1.2 ) 24)

10
v = ( 2 ) (2.5)
1

The reader should check that

10@)“(23)“(_13) (2.6)

so that e.g. v; = 10 and ¢; = (5, 1)", does indeed work out to
60
14

Note that we choose the partitioning; there is no inherent par-
tition structure. In some settings, there is a structure that fits
our needs, and we use that.

and

i.e. to Av. It works!

2.12.2 Linear combinations of rows and columns of a
matrix

Note that the above expression Equation 2.6,

o(1)72(ae) 1 (2),

is a sum of scalar products of vectors, which is called a linear
combination of those vectors. The quantities 10, 2 and 1 are
the coefficients in that linear combination.

In view of the fact that that linear combination worked out to
be Av, we have that:
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Theorem 2.2. The product Av of a matriz times a column
vector is equal to a linear combination of the columns of the
matriz, with coefficients equal to the column vector.

Similarly,

Theorem 2.3. The product wA of a row vector and a matriz
s equal to a linear combination of the rows of the matriz, with
the coefficients coming from the row vector.

To further illustrate all this, write the above matrix in Equa-
tion 2.4 as

A=( Ay, Ap) (2.7)

where

and

6
Az = ( —1.2 )

Symbolically, in Equation 2.7, A now looks like a 1x2 “matrix.”
Similarly, rewriting Equation 2.5, we have

- ()
Vg1

10
V11 = 9

and vy; = 1 (a 1x1 matrix); v looks to be 2x1, though it is
actually 3 x 1.

where
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So, again pretending, treat the product Av as the multiplication
of a 1 x 2 “matrix” and a 2 x 1 “vector”, yielding a 1 x 1 result,
another “dot product,”

Ajqvyg + Ajgvy

But all that pretending actually does give the correct answer!

5 2 (10 6 60
Anvn vy = ( 1 26 > ( 2 )+< ~1.2 ) L= ( 14 )

which is the true value of Av.

We can extend that reasoning further. Say A and B are ma-
trices of sizes m x n and n X k, and consider the product AB.
Partition B by its columns,

B = (BW|B®?)|...|B%)

Now pretending that A is a 1 x 1 “matrix” and Bisa 1 x k
“matrix”, we have

AB = (ABW|AB®)|...|AB™)
In other words, making use of Theorem 2.2,

Theorem 2.4. In the product AB, column j is a linear combi-
nation of the columns of A, and the coefficients in that linear
combination are the elements of column j of B.

A similar result holds for the rows of the product.
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2.13 Your Turn

Your Turn: Fill in the blank with a term from this chap-
ter: The adjacency matrix of an undirected graph is necessarily

Your Turn: Consider the Karate Club dataset.

¢ Which members is member 6 linked with?

e Which member is linked to the most number of members?
How about the least number?

e Find an example of a triad, i.e. a set of 3 members who
are all linked to each other.

Your Turn: We say a square matrix is upper-triangular if its
below-diagonal elements are all 0s. (There is a similar concept
of lower-triangular.) Explain why, given two upper-triangular
matrices A and B of the same size, the product AB is also
upper-triangular.

Your Turn: Write an R function with call form

outLinks(adj)

where adj is the adjacency matrix of some network graph, pos-
sibly directed. The function will return an R list, whose ‘"
element is a vector of all the nodes that have exactly ¢ outgo-

ing links.

Your Turn: Consider the matrix

b

Il
o= ko w
= O oo

Say we decide to partition it as
B
=(7)

38



Now consider the product AA’. Using partitioning, we would
treat B and I numbers and the product as having factors of
size 2 x 1 and 1 x 2. That would give us a 2 X 2 “matrix”

AN = ( " ) (B, 1) = < Bg: " ) (2.8)

Evaluate AA” and the far-right side of Equation 2.8 to verify
that the partitioning did indeed give us the right answer.

Your Turn: The long-run probabilities in Section 2.6 turned
out to be uniform, with value 0.20 for all five states. In fact,
that is usually not the case. Make a small change to P, — remem-
ber to keep the row sums to 1 — and compute a high power to
check whether the long-run distribution seems nonuniform.

Your Turn: Not every Markov chain, even ones with finitely
many states, have long-run distributions. Some chains have
periodic states. It may be, for instance, that after leaving state
i, once can return only after an even number of hops. Modify
our example chain here so that states 1 and 5 (and all the
others) have that property. Then compute P™ for various large
values of n and observe oscillatory behavior, rather than long-
run convergence.

Your Turn: Consider the following Markov model of a
discrete-time, single-server queue:

o Model parameters are p (probability of job completion
in a particular time epoch), ¢ (probability of new job
arriving) and m (size of the customer waiting area).

o Jobs arrive, are served (possibly after queuing) and leave.
e Only one job can be in service at a time.

o At each time epoch:

— The job currently in service, if any, will complete
with probability p.

— After a job completion, a job in the queue, if any,
will start service.
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— A new job will arrive with probability ¢. If the server
is free, this new job will start service, rather than go-
ing to the waiting room. If the queue is not full when
this job arrives, it will join the queue; otherwise, the
job is discarded.

e The system is memoryless in the Markov sense. If a job
has been in service for many epochs now, the probability
that it finishes in the next epoch is still p.

e The current state is the number of jobs in the system,
taking on the values 0,1,2,..,m+1; that last state means
m jobs in the queue and 1 in service.

For instance, say p = 0.4, ¢ = 0.2, m = 5, Suppose the current
state is 3, so there is a job in service and two jobs in the queue.
Our next state will be 2 with probability (0.4) (0.8); it will be
3 with probability (0.4) (0.2), and so on.

Analyze this system for the case given above. Find the approxi-
mate long-run distribution, and also the proportion of jobs that
get discarded.

Your Turn: Prove Equation 2.3. Hint: Write out the left-
hand side as a double sum. Reverse the order of summation,
and work toward the right-hand side.

Your Turn: Write out the details of the “similar result” in
the statement of Theorem 2.4.
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3 Matrix Inverse
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1 Goals of this chapter:

Central to matrix operations is the matrix inverse, which
is somewhat analogous to reciprocals in arithmetic.

This is a fundamental operation in linear algebra (though
ironically, related quantities are often used instead of us-
ing the inverse directly).

To motivate our discussion of matrix inverse, we first revisit the
topic of Markov chains.

3.1 A Further Look at Markov Chains

Suppose X, our state at time 0, is random. Let f denote its
distribution, i.e. its list of probabilities: f; = P(X, = 1), i
= 1,...k, where k is the number of states in the chain. What
about the distribution of X, the state at time 1?7 Let’s find an

expression for g, the distribution of X, in terms of f.

Ead

k
g; = P(X, = j) =Y P(Xy=i)P(X, = Xy =1) = Y fa,
=1

7 =1

where a,; is the row ¢, column j element of the chain’s transition
matrix P.

Putting this is more explicit matrix terms,

g = (g91,-091) = (frag + o+ frapy, o frag + o+ frag,)

Setting b; to column j of P and using matrix partitioning, we
see that that last expression is

(f/bb "'7f/bk) = f/(blv abk) = f/P

So we have a nice compact relation for the distribution of X,
in terms of the distribution of X|,.
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g =rr

And setting h to the distribution of X,, the same reasoning
gives us

h =gP

Let d, denote the distribution of X,. Generalizing the above
reasoning gives us

For convenience, let’s take transposes (recalling that (AB)" =
B'A"):

d, =P'd,_, (3.1)

Now suppose our chain has a long-run distribution v, as in
{Section 2.6}, so that

lim d, = v
7—00

Applying this to Equation 3.1, we have

v=Pv (3.2)

Since P is known, this provides us with a way to compute v.

All we need to do is solve Equation 3.2. Well, how do we do
that? It turns out that use of matrix inverses will solve our
problem.
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3.2 Definition

For any square matrix A, its inverse B (if it exists)
is a square matrix of the same size such that

AB=BA=1

where [ is the identity matrix of that size.

As hinted, many matrices do not have inverses. For instance, if
A consists of all 0s, there is no way to get I from AB.

In very rough terms, it sometimes helps the intuition to think
of an inverse as the “reciprocal” of the matrix.

We will often speak of the inverse of A. In fact, if A is invertible,
its inverse is unique.

3.3 Example: Computing Long-Run Markov
Distribution

Now let us return to Equation 3.2, which expresses the vector of
long-run state probabilities for a Markov chain with transition
matrix P and stationary distribution v, How can we use matrix
inverses to solve this equation?

Starting with

v=Pv (3.3)

rewrite using the identity matrix:

(I—P)=0

For the random walk chain in Chapter 1, we had
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05 05 0 0 O

05 0 05 0 O

P= 0 05 0 05 O
0 0 05 0 05

0 0 0 05 05

(3.4)

With v = (vy,v,,v5,v4,5)", the equation to be solved, (I —
Plv=uv,is

05 =05 0 0 0 v, 0
05 1 -05 0 0 v 0
0 05 1 —05 0 v, =10
0 0 -05 1 —05 v, 0
0O 0 0 —05 05 v 0

If we perform the matrix multiplication, we have an ordinary
system of linear equations:

0.5v; —0.5v5 =0
—0.5v; + vy —0.5v3 =0
—0.5v5 +v53 —0.5v, =0 (3.5)
—0.5v3 + v, —0.5v5 =0
—0.5v4 + 0.5v5 =0

This is high school math, and we could solve the equations that
way. But this is literally what linear algebra was invented for,
solving systems of equations! We will use matrix inverse.

But first, we have a problem to solve: The only solution to the
above system is with all v; = 0. We need an equation involving
a nonzero quantity.

But we do have such an equation. The vector v is a stationary
distribution for a Markov chain, i.e. the set of long-run proba-
bilities, and thus it must sum to 1.0. Let’s replace the last row
by that relation:
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0.5 —0.5 0 0 0 vy 0
—0.5 1 —05 0 0 Vy 0
0 —0.5 1 —0.5 0 vs | =10
0 0 —0.5 1 —05 vy 0
1 1 1 1 1 Vs 1
(3.6)
More compactly,
Gv=gq
If our matrix G is invertible, we can premultiply both sides of I — P’ might not be invertible, as
our equation above, yielding there may not be a long-run

distribution.

Glq=G"'Gv=v

So, we have obtained our solution for the stationary distribution
V?

v=G_G1q

We can evaluate it numerically via the R solve function, which
finds matrix inverse:

G <-

rbind(c(0.5,-0.5,0,0,0), c(-0.5,1,-0.5,0,0), c(0,-0.5,1,-0.5,0),
c(0,0,-0.5,1,-0.5), c(1,1,1,1,1))

G

(,11 [,2] [,3] [,4] [,5]
[1,] 0.5 -0.5 0.0 0.0 0.0

[2,] -0.5 1.0 -0.5 0.0 0.0
[3,] 0.0 -0.5 1.0 -0.5 0.0
[4,] 0.0 0.0 -0.5 1.0 -0.5
[5,] 1.0 1.0 1.0 1.0 1.0
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Ginv <- solve(G)

# check the inverse

Ginv %*% G # yes,

[,1]
[1,] 1.000000e+00
[2,] 1.942890e-16
[3,] -2.775558e-17
[4,] -1.665335e-16
[5,] -1.665335e-16

nu <- Ginv %xY% c(O0,

nu

[,1]
(1,1 0.2
[2,] 0.2
(3,1 0.2
[4,] 0.2
(5,1 0.2

get I (of course with some roundoff error)

[,2] [,3] [,4]
1.942890e-16 -1.387779e-16 1.942890e-16
1.000000e+00 3.053113e-16 -2.775558e-17
0.000000e+00 1.000000e+00 0.000000e+00
4.996004e-16 -3.608225e-16 1.000000e+00
7.216450e-16 -4.996004e-16 5.551115e-17

0,0,0,1) # recall that q = ¢(0,0,0,0,1)

This confirms our earlier speculation in Section 2.6 based on

powers of P.

3.4 Matrix Algebra

Several properties to note:

e If the inverses of A and B exist, and A and B are con-
formable, then (AB)~! exists and is equal to B~ A~

Proof: Consider the product (AB)(B~*A~!). The B fac-
tors give us I, leaving AA~!, which too is I.

o (A)7! exists and is equal to (A1)’

Proof: Follows immediately from AA~! = I and the fact
that (UV) =V'U".

47

[,5]
8.326673e-17
8.326673e-17
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o If A is invertible and symmetric, then (A~!)" is also sym-
metric.

Proof: For convenience, let B denote A~'. Then

AB=1

Again using the fact that the transpose of a product is
the reverse product of the transposes, we have

I=1=(AB) =B A’

But since A’ = A, we have

I=DBA

In other words, not only is B the inverse of A, B’ is too!
So, B=B’.

3.5 Computation of the Matrix Inverse

Finding the inverse of a large matrix — in data science applica-
tions, the number of rows and columns 7 can easily be hundreds
or more — can be computationally challenging. The run time
is proportional to n3, and roundoff error can be an issue. So-
phisticated algorithms have been developed, such as the QR
decompositions. So in R, we should use, say, qr.solve rather
than solve if we are working with sizable matrices, or even use
methods that do not directly compute the inverse.

The classic “pencil and paper” method for matrix inversion is
instructive, and will be presented here.

48



3.5.1 Pencil-and-paper computation

Note: Some readers will notice some similarity here with el-
ementary methods they learned in high school, but actually
the treatment here is much more sophisticated. It will play an
important practical and theoretical role in Chapter 7.

The basic idea follows the pattern the reader learned for solv-
ing systems of linear equations, but with the added twist of
involving some matrix multiplication.

Let’s take as our example

4 7
A‘(—s 15)

We aim to transform this to the 2 x 2 identity matrix, via a
sequence of row operations.

3.5.2 Use of elementary matrices

Let’s multiply row 1 by 1/4, to put 1 in the first element:

L3
—8 15

In matrix terms, that operation is equivalent to premultiplying

A by

(Reader: Make SURE to verify this!)

O =
= o
N——

We then add 8 times row 1 to row 2, yielding

L
0 29

The premultiplier for this operation is
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1
8

n ()

Multiply row 2 by 1/29:
1
0

corresponding to premultiplication by

ES:(é 1/28)

And finally, add -7/4 row 2 to row 1:

)
(3 1)

Now, how does that give us A='? The method your were taught
probably set up the partioned matrix (A, I). The row opera-
tions that transformed A to I also transformed I to A~!. Here’s
why:

—

The premultiplier is

[EERUNEN|

As noted, the row operations are such that

E,E4E,E, A

give us the final transformed result, i.e. the matrix I:

Aha! We have found the inverse of A —it’s E,EsE,E,.

Note too that Recall that the inverse of a product
(if it exists is the reverse product of

the inverses.
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A= (E,B3E,E)) ' = E; B3 By By

So apparently the inverses of the elementary matrices E,; also
exist, and in fact we can obtain them easily:

Each E; ! simply “undoes” its partner. E;, for instance, mul-
tiplies the row 1, column 1 element by 1/4, which is “undone”
by multiplying that element by 4,

) 40
w0 7)

Also, to undo the operation of adding 8 times row 1 to row 2,
we add -8 times row 1 to row 2:

_ 10
mte ()

3.6 Nonexistent Inverse
Suppose our matrix A had been slightly different:

4 7
A‘(—s —14)

This would have led to
13
0 0

This cannot lead to I, indicating that A~! does not exist, and
the matrix is said to be singular. And it’s no coincidence that
row 2 of A is double row 1. This has many implications, as will
be seen in our chapter on vector spaces.
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3.7 Determinants

This is a topic that is quite straightforward and traditional,
even old-fashioned — in fact, too old-fashioned, according to
mathematician Sheldon Axler. The theme of his book, Linear
Algebra Done Right, is that determinants are overemphasized.
He relegates the topic to the very end of the book. Yet de-
terminants do appear often in applied linear algebra settings.
Moreover, they will be convenient to use in explaining concepts
in this book on linear algebra in Data Science.

But why place the topic in this particular chapter? The answer
lies in the fact that earlier in this chapter we had the proviso
“If (A’A)~1 exists” The following property of determinants is
then relevant:

A square matrix G is invertible if and only if

det(G) # 0.

There are better ways to ascertain invertibility than this, but
it is conceptually helpful. Determinants play a similar role in
the topic of eigenvectors in Chapter 13.

3.7.1 Definition

The standard definition is one of the ugliest in all of mathemat-
ics. Instead we will define the term using one of the methods
for calculating determinants.

Consider an r X r matrix G. For r = 2, write G as

a b
o= )
and define det(G) to be ad — be. For r > 2, define

submatrices as follows.

Define G to be the (r — 1) x (r — 1) submatrix
obtained by removing row 1 and column j from G.
Then det(G) is defined recursively as
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T

S (1)1 det(G)

i=1

Say r = 4. Applying this formula, we find our orig-
inal determinant in terms of the determinants of
some 3 x 3 matrices, and then we apply the formula
to those matrices. That gives us a sum of determi-
nants of 2 x 2 matrices, for which we have an explicit
formula.

Actually, we can alternatively remove row i instead
of row 1. If 7 is an odd number, the same recursive
formula holds, but for even i, replace (—1)*"! by

(—=1)"
The same rules apply if ‘row’ is replaced by ‘column’
above.

For instance, consider

5 1 0
M=|3 -1 7
0 11

Then det(M) =5(—1—7) —1(3—0) + 0 = —43.
A glimpse at the classical definition:

Using the same approach as in the last computation, we would
find that the determinant of a general 3 x 3 matrix

a b
d e
g h

aei +bfg+ cdh —afh — bdi — ceg

s}

is

Fach term here is involves a product of 3 of the elements of
the matrix. In general, the determinant involves sums and
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differences of permuted products of distinct elements of the
matrix, as we see above. The formation of the terms in general,
and the determination of 4+ and - signs, is done in complex but
precise manner that we will not present here. But the reader
should at least keep in mind that each term is a product of
n elements of the matrix, a fact that will be relevant in the
sequel.

3.7.2 Properties

We state these without proof:

o G ! exists if and only if det(G) # 0
o det(GH) = det(G) det(H)

3.8 Your Turn

Your Turn: In Section 3.5.2, find the inverses of E5 and F,
using similar reasoning, and thus find A=,

Your Turn: If the matrix A has a 0 row, then det(A) must
be 0. Explain why.

Your Turn: We say a square matrix A = (a;;) is upper-
triangular if its below-diagonal elements are all 0s. Give a
closed-form formula for det(A) in terms of the a,;.

Your Turn: In Equation 2.1, consider the variant

05 05 0 0 O

05 0 05 0 O

P = 0 05 0 05 O
0 0 05 0 05

0 0 0 1.0 0.0

Here, the walker at state 5 immediately “bounces back” to state
4, rather than remaining at state 5 for one or more epochs.
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In the original chain, we found that v = (0.2,0.2,0.2,0.2,0.2)".
Speculate as to the effect on v of the above change in model.
Then investigate to determine if our speculation was correct.

Your Turn: Consider a Markov chain with transition proba-

01
P =
(79)
This chain is termed periodic, with period 2. It alternates be-
tween states 1 and 2, and thus a long-run distribution v does

not exist. That would suggest that I — P’ is noninvertible.
Confirm this.

bility matrix

Your Turn: If you are familiar with recursive calls, write a

function dt(a) to compute the determinant of a square matrix
A.

Your Turn: Prove the assertions in Section 3.4. Note that
for the identity matrix I, I’ = 1.

Your Turn: The determinant of a 3 x 3 matrix

S o
E A N~

is

aet +bfg+ cdh — ceg — bdi — afh

Suppose the elements of M are independent random variables
with uniform distributions on (0,1). Argue that P(M is invert-
ible) = 1.
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4 Covariance Matrices, MV
Normal Distribution
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1 Goals of this chapter:

A central entity in multivariate analysis is that of the co-
variance matriz. In this chapter we define the term, list
its many properties, and show its role in the multivariate
analog of the normal distribution family.

4.1 Random Vectors

You are probably familiar with the concept of a random vari-
able, but of even greater importance is random wvectors.

Say we are jointly modeling height, weight, age, systolic blood
pressure and cholesterol, and are especially interested in re-
lations between these quantities. We then have the random
vector

X, height
X, weight
X = X3 = age
Xy bp
X5 chol

4.1.1 Sample vs. population

We may observe n realizations of X in the form of sample data,
say on n = 100 people. In the statistics world, we treat this
data as a random sample from some population, say all Amer-
icans. Usually, we are just given the data rather then having
actual random sampling, but this view recognizes that there
are a lot more people out there than our data.

We speak of estimating population quantities. For instance,
we can estimate the population value F(X)), i.e. mean of X,
throughout the population, by the sample analog,

1 n
0 22
=1
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where X, denotes the value of X, for the 4" person in our
sample.

By contrast, this view is rarely taken in the machine learning
community. The data is the data, and the fact that it is a
small subset of a much larger group is irrelevant. They will
often allude to the randomness of the data by mentioning the
“data generating mechanism,” but go no further.

4.2 Covariance

4.2.1 Scalar covariance

Recall first the notion in statistics of covariance: Given a pair
of random variables U and V, their covariance is defined by

Cov(U,V) = E[(U — EU)(V — EV)]

Loosely speaking, this measures the degree to which the two
random variables vary together. Consider for instance human
height H and W. Taller people tend to also be heavier. Say
we sample many people from a population. Most of those who
are taller than average, i.e. H > FH, will also be heavier than
average, W > EW, making (H—FEH)(W—EW) > 0. Similarly,
shorter people tend to be lighter, i.e. we often have H < FH
and W < EW, but then we still have (H —EH)(W —EW) > 0.
So, one way or the other, usually (H — EH)(W — EW) > 0,
and though there will be a number of exceptions, they will be
rare enough so that

E[(H — EH)(W — EW)] > 0.

In other words, Cov(H,W) > 0. Similarly if U is often
large when V is small, and vice versa, we will likely have
Cov(H,W) < 0.

If this sounds like correlation to you, then your hunch is correct.
Covariance will indeed later lead to the concept of correlation,
but that intuition will serve us now.

Note some properties of scalar covariance.

o8

Of course, the magnitude of
(H— EH)(W — EW) plays a role

too.



e Symmetry:

Cov(U,V) = Cou(V,U)

e (Cov is bilinear:

Cov(aU,bV) = ab Cov(U,V)

e Variance as a special case:

Cov(U,U) = Var(U)

e Cross-product term:

Var(U+V)=Var(U)+ Var(V)+ 2Cov(U,V) (4.1)

e “Short cut” formula:
Cov(U,V)=EUV)— (EU)(EV) (4.2)

4.2.2 Covariance matrices

The above was a review of the notion of covariance between two
scalar random variables. We now turn to defining covariance
for a random vector, which will turn out to be a matrix.

The relations between the various components of a random vec-
tor X are often characterized by the covariance matriz of X,
whose entries consist of scalar covariances between pairs of com-
ponents of a random vector.

It is defined as follows for a k-component random vector X.
The covariance matrix, denoted by Cov(X), is a k x k matrix,
and for 1 <i,j <k, its row 4, column j element is
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Warning: The notation is somewhat overloaded. “Cov” refers
both to the covariance between two random variables, say
height and weight, and to the covariance matrix of a random
vector. But it will always be clear from context which one is
being discussed.

The matrix expression for Cov(X) is

E[(X — EX)(X — EX)] (4.3)

where EX is the mean vector for X, whose it"

E(X;).

component, is

As an example, here is data on major league baseball players:

library(qeML)
data(mlbl)
head (mlbil)

Position Height Weight  Age

1 Catcher 74 180 22.99
2 Catcher T4 215 34.69
3 Catcher 72 210 30.78
4 First_Baseman 72 210 35.43
5 First_Baseman 73 188 35.71
6 Second_Baseman 69 176 29.39

hwa <- mlb1[,-1]
cov (hwa)

Height Weight Age
Height 5.3542814 25.61130 -0.8239233
Weight 25.6113038 433.60211 12.9110576
Age -0.8239233 12.91106 18.6145019

cor (hwa)

Height Weight Age
Height 1.00000000 0.5315393 -0.08252974
Weight 0.53153932 1.0000000 0.14371113
Age -0.082562974 0.1437111 1.00000000
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Again, this is sample data. We find that the sample estimate
of the covariance between height and weight is 25.61130.

We'll be discussing more of this later, but what about that
negative correlation between height and age? It’s near 0, and
this could be a sampling artifact, but another possibility is that
in this sport, shorter players do not survive as well.

Properties of the matrix version of covariance:

e Matrix form of definition:

Cou(X) = E[(X — X)(X — EX)'] (4.4)

(Note the dimensions: X is a column vector, say k x 1, so
(X — X)(X — EX)" is k x k. The expected value is then
of that size as well.)

e For statistically independent random vectors Q and W of
the same length,

Cov(Q + W) = Cov(Q) + Cov(W) (4.5)

e For any nonrandom scalar ¢, and ) a random vector, we
have

Cov(cQ) = c?Cov(Q)

e Say we have a random vector X, of length k, and a non-
random matrix A of size m xk. Then AX is a new random
vector Y of m components. It turns out that

Cov(Y) = ACov(X)A’ (4.6)

The proof is straightforward but tedious, and will be
omittted.

e Cov(X) is a symmetric matrix. This follows from the
symmetry of the definition.
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The diagonal elements of Cov(X) are the variances of
the random variables X,. This follows from Cov(U,U) =
Var(U) for scalar U.

If X is a vector of length 1, i.e. a number, then

Cov(X)=Var(X)
For any length-k column vector a,
Var(a’X) =a’ Cov(X) a (4.7)

Since variance is nonnegative, we thus see that Cov(X)
is nonnegative definite, meaning that for any length-% col-
umn vector a

a’'Cov(X)a>0 (4.8)
Similarly, a matrix @ is termed positive definite if

a’Qa >0 (4.9)

unless a = 0.

More generally, for any compatible constant vectors a and
b,

Cov(a’ X,b'X) =a'Cov(X)b

For any constant (i.e. nonrandom) m X k matrix A,

Cov(AX) = ACov(X)A’ (4.10)
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4.3 The Multivariate Normal Distribution
Family

The familiar “bell-shaped curve” refers to the normal (or Gaus-
sian) family, whose densities have the form

1 ostey

oV 2T

The values of 1 and ¢ are the mean and standard deviation.
But what if we have a random vector, say of length k7 Is there
a generalized normal family?

4.3.1 Example: k = 2

The answer is yes. Here is an example for k = 2:
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Figure 4.1: 3D bell density

4.3.2 General form

Well, then, what is the form of the k-dimensional density func-
tion? Just as the univariate normal family is parameterized by
mean and variance, the multivariate one is parameterized via
mean vector p and covariance matriz X. The form is

(27)7F/2 det() /2 0-5(t-w) (%) (t=n) (4.11)

Note the intuition:

o Instead of 1/0?, i.e. instead of dividing by variance, we
“divide by X,” intuitively viewing matrix inverse as a “re-
ciprocal” of a matrix.
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e In other words, covariance matrices operate roughly like
generalized variances.

o Instead of squaring the scalar ¢t — u, we “square” it in the
vector case by peforming a w’w operation, albeit with
Y71 in the middle.

Clearly, we should not stretch these analogies very far, but they
do help our intuition here.

4.3.3 Properties

Theorem 4.1. If a random vector is multivariate (MV) nor-
mally distributed, then the conditional distribution of any one
of its components Y, given the others X ;},.,s =t (note that t
is a vector if k > 2) has the following properties:

o It has a (univariate) normal distribution.

o Its mean E(Y|X ipers = 1) s linear in t.

o Its variance Var(Y|X =t) does not involve t.

others

These of course are the classical assumptions of linear regres-
ston models: normality, linearity and homoskedasticity. They
actually come from the MV normal model.

More generally: Denote the mean vector and covariance matrix
a random vector X by u and X. Partition X as

Xy

Xy
and partition p and X similarly. The conditional distribution of
X, given X, =t is multivariate normal with these paramters:

E(X,|Xy=1t) = py + D155 (t — pio) (4.12)

Cov(X;|Xy =1) = B3 — 215555 8y (4.13)
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Proof. This comes out of writing down the conditional density
(overall density divided by marginal), and then doing some al-
gebra.

O O

Again, note the absence of ¢ in Equation 4.13.

Note too that the conditional covariance matrix, ¥;; of X,
given X,

Y1 — X955 8y

is “smaller” than the unconditional one, ¥;;. X, varies less
when we know something about X,.

Theorem 4.2. If X is a multivariate-normal random vector,
then so is AX for any conformable nonrandom matrix A.

Proof. Again, perform direct evaluation of the density.

O O

Theorem 4.3 (Cramer-Wold Theorem). A random vector X
has a multivariate normal distribution if and only if w' X has a
univariate normal distribution for all conformable nonrandom
vectors w.

Proof. “Only if” follows from above. “If” part too complex to
present here.

(] O

Theorem 4.4 (The Multivariate Central Limit Theorem). Let
X, X,,... be a sequence on statistically independent random
vectors, with common distribution having mean vector u and
covariance matrix 3, but not necessarily MV normal. Write

X, 4.+ X,
n

X =

Then the distribution of the random vector
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intuitive view. One matrix is not
“smaller” than another. One way to
make this mathematically rigorous is
to say that the matrix B is smaller
than (or equal to) the matrix A if
A — B is nonnegative definite,

i.e. u'(A— B)u > 0 for all vectors wu.
Since in this case A — B is a
covariance matrix, thus nonnegative
definite (see Equation 4.8), our
intuitive statement would become

rigorous under this definition.



goes to multivariate normal with the 0 wvector as mean and
covariance matriz X.

Proof. Theorem 4.3 reduces the problem to the univariate case,
where we know the Central Limit Theorem holds.

O O

4.4 Multinomial Random Vectors Have
Approximate Multivariate Normal
Distributions

Recall that a multinomial random vector is the mathematial

analog of an R factor variable — a categorical variable with
k levels/categories. Just as a binomial random variable rep-
resents the number of “successes” in n “trials,” a multinomial
random vector represents the numbers of successes in each of
the k categories.

Let’s write such a random vector as
N,
X =
Ny,
Let p, be the probability of a trial having outcome ¢ =1, ..., k.
Note the following:

o The marginal distribution of IV, is binomial, with success
probability p;, and n trials.

So for instance if we roll a fair die 10 times, then N, is the
number of trials in which the roll’s outcome was ¢ dots and
p;,=1/6,1=1,2,3,4,5,6.

Let’s find Cov(X). Define the indicator vector
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chapter.

To be consistent, view the binomial
case as tabulating both successes
and failures, e.g. both heads and
tails in coin flips. Then from that
viewpoint, the binomial case is

multinomial with £ = 2.



Here I;; is 1 or 0, depending on whether trial ¢ resulted in
category j. (A 1 “indicates” that caregory j occurred.)

The key is that

X=>1 (4.14)

n
=1
For instance, in the die-rolling example, the first component on
the right-hand side is the number of rolls in which we got 1 dot,
and that is by definition the same as N, the first component
of X.

So there we have it — X is a sum of independent, identically dis-
tributed random vectors, so by the Multivariate Central Limit
Theorem, X has an approximate multivariate normal distribu-
tion. Now, what are the mean vector and covariance matrix in
that distribution?

From our discussion above, we know that

npq
EX =

npy.

What about Cov(X)? Again, recognizing that Equation 4.14
is a sum of independent, identically distributed terms, Equa-
tion 4.5 tells us that

n

Cov(X) = C’ov(z I,)= Z Cov(I;) = nCov(Iy),

i=1

that last equality reflecting that the I, are identically dis-
tributed (the trials all have the same probabilistic behavior).

Now to evaluate that covariance matrix, consider two specific
elements I,; and I;,, of I;. Recall, those elements are equal
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to 1 or 0, depending on whether the first trial results in Cate-
gories j and m, respectively. Then what is Cov(Iy;, I;,,)? From
Equation 4.2, we have

COUUua L) = E<I1jllm) - (Ellj)(Ellm) (4.15)
Consider the two cases:

e i =j: Here E(Ifj) = E(Ilj) =p;. Thus

COU(Im Ii,) = pj(l _pj>

e i # j: Each I, consists of one 1 and k£ — 1 0s. Thus

COU(Ilj? Ilm) = —DiPm

4.5 Your Turn

Your Turn: In Equation 4.11 with k = 2, write t = (t;,t,),
and consider the quantity in the exponent,

(t—p)(2)Ht—p)
Say we set this quantity to some constant ¢, then graph the

locus of points ¢ in the ¢;,¢, plane. What geometric figure
would we get?

Your Turn: In Theorem 4.1, suppose

(50 )

and

52 6.2
> = ( 6.2 20.1 )
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Find the regression line

mean Y =a+ bX

Your Turn: Show that in the scalar context,

Cov(X,Y) = E(XY)— EX EY

Your Turn: Show that in the vector context,

Cov(X) = BE(XX') — (EX)(EX)

Your Turn: Suppose

W =X'B+aS

for a random vector X, a scalar random variable S, a nonran-
dom vector 8 and a nonrandom scalar «. Show that

Cov(W,S) = p'Cov(X,S) + aVar(S)
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5 Linear Statistical Models
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1 Goals of this chapter:

Here we bring together the concepts of previous chapters
by presenting the linear model, one of the most funda-
mental techniques in statistics. It relies heavily on linear
algebra, notably matrix inverse, but the use of linear al-
gebra extends far beyond that.

This chapter could have been titled, say, “Optimization, Part I1,”
since many applications of linear algebra involve minimization
or maximization of some kind, and this chapter will involve
calculus derivatives. But the statistical applications of linear
algebra are equally important.

5.1 Linear Regression through the Origin

Let’s consider the Nile dataset built-in to R on the height of
the Nile River. It is a time series, one measurement per year.
We will predict each year’s value from the previous one.

head(Nile)

[1] 1120 1160 963 1210 1160 1160

nl <- Nile[-(length(Nile))]
head(nl)

[1] 1120 1160 963 1210 1160 1160

# we will need a lag-1 version of the data
n2 <- Nile[-1]
head (n2)

[1] 1160 963 1210 1160 1160 813

Calling
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plot(nl,n2,cex=0.4,x1im=c(0,1400),yli=c(0,1400))

gives us
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Figure 5.1: lagged Nile
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We would like to fit a straight line through that data point

cloud. We might have two motivations for doing this:

e The line might serve as nice summary of the data.

e More formally, let C' and V' denote the current and pre-
vious year’s measurements. Then the model

E(C|V)=pV

may be useful. Here the slope § is an unknown value to

be estimated from the data.
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I Model Validity

The great statistician George Box once said, “All models
are wrong but some are useful.” All data scientists should
keep this at the forefronts of their minds.

5.1.1 Least squares approach

We wish to estimate § from our data, which we regard as a
sample from the population/data generating process. Denote
our data by (C;,V;),i = 1,...,100. Let § denote our estimate.
How should we obtain it?

Pretend for a moment that we don’t know, say, Cyg. Using our
estimated (3, our predicted value would be $V,g. Our squared
prediction error would then be (Cyg — SWag)2.

Well, we actually do know Cyg (and the others in our data), so
we can answer the question:

In our search for a good value of BA, we can ask how well we
would predict our known data, using that candidate value of g
in our data. Our total squared prediction error would be

100 R
> [C = pVv)?
i=1
A natural choice for B would be the value that minimizes this

quantity.

5.1.2 Calculation

As noted, our choice for B will be the minimizer of
100
> (G = bV

i=1

over all possible values of b. We then set ,é to that minimizing
value of b.
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This is a straightforward calculus problem. Setting

100 100

— d 2 _
0= g5 2 (Cim VP ==2) (=W,

and solving b, we find that

5.1.3 R code

Im(n2 ~ ni1-1)

Call:
Im(formula = n2 ~ nl1 - 1)

Coefficients:
nl
0.98

This says, “Fit the model E(C|V) = BV to the data, with the
line constrained to pass through the origin.” The constraint is
specified by the -1 term.

We see that the estimated regression line is

E(C|V) =0.98V
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5.2 Linear Regression Model with Intercept
Term

Say we do not want to constrain the model to pass the line
through the origin. Our model is then

E(C|V) =y + BV

where we now have two unknown parameters to be estimated.

5.2.1 Least-squares estimation, single predictor
Our sum of squared prediction errors is now

100

Z[Ci — (bo + 0, V)

i=1

This means setting two derivatives to 0 and solving. Since the
derivatives involve two different quantities to be optimized, b,
and by, the derivatives are termed partial, and the 0 symbol is
used instead of ‘d’.

and

5 100

= b, ;[Cz — (by + b, V})]? (5.3)
100

= -2 Z[Cz — (by + 0, V)V, (5.4)

0

We could then solve for the b;, but let’s go straight to the
general case.
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5.3 Least-Squares Estimation, General
Number of Predictors

5.3.1 Nile example
As we have seen, systems of linear equations are natural appli-

cations of linear algebra. The equations setting the derivatives
to 0 can be written in matrix terms as

(Fe)- (e BH)(E) o

Actually, that matrix equation can be derived more easily by
using matrices to begin with:

Define S and T':

and

Vl
T=| V2
VlOO

Then our linear assumption, E(C|V) = §, + 5,V applied to S
and T, is

E(S|T) = AB

where

77



(5.6)
1 ‘/100
and 8 = (B, 41)"

Our predicted error vector, using our candidate estimate b of
0, is very simply expressed:

S —Ab

And since for any column vector u, the sum of its squared
elements is

uw'u

our sum of squared prediction errors is

(S — Ab)'(S — Ab) (5.7)

Now how we will minimize that matrix expression with respect
to the vector b? That is the subject of the next sections.

5.3.2 General setting

We consider the general linear regression setting in which we
have p predictor variables V1), ... V) with

ECIVY =t VP =t ) =By + Bit) + .. + Bt

Say we have n data points. Denote the value of V9 in the i*"

data point by a, ;, and write
1 a0 aq,

A= .
I ap o ay,
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in informal comments, to indicate
our predictor variables and the
quantity to be predicted. For
instance, ‘Say we have “X” and “Y”
as human height and weight” means
‘Say we wish to predict human

weight from height.



and

E(S|A) = Ap
Note the column of 1s, needed to pick up the 3, term.
As before S is the vector of associated “Y” values.
5.3.3 Matrix derivatives

The (column) vector of partial derivatives of a scalar quantity
is called the gradient of that quantity. For instance, with

u=2z+3y* +zy

we have that its gradient is

2+y

6y + x
With care, we can compute gradients entirely at the matrix
level, using easily derivable properties, without ever resorting

to returning to the scalar expressions. Let’s apply them to the
case at hand in the last section,

(S — Ab)'(S — Ab) (5.8)

5.3.4 Differentiation purely in matrix terms

It can be shown that for a column vector a,

d

—a'a=2 5.9
L0 e=2a (5.9)

Equation 10.2 is indeed of the form a’a, with a = S — Ab, but
the problem here is that a in turn is a function of b, This calls
for the Chain Rule, which does exist at the matrix level:
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For example if u = Mv + w, with M and w constants (i.e. not
functions of v, then

d
—u'u=2M"u
dv
We must keep in mind that we are
working with vectors and matrices,
In our case at hand, we have M = —A and w = S, so that

so that M’u, say r x s times s x 1, is

d conformable matrix multiplication.
(S — Ab)'(S — Ab)] = —24/(S — Ab)
So, set

0=A(S—Ab)=A"S—A"Ab
yield our minimizing b:

B=(AA)1A'S (5.10)

providing the inverse exists (more on this in later chapters).

Let’s check this with the Nile example:

A <- cbind(1,n1)

S <- n2

Ap <- t(A) # R matrix transpose

solve(Ap %*% A) %*% Ap %*% S # R matrix inverse

[,1]
452.7667508
nl  0.5043159

# check via R
Im(n2 ~ nl)
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Call:
Im(formula = n2 ~ nl)

Coefficients:
(Intercept) nl

452.7668 0.5043
Also,

det (Ap %x% A)

[1] 277463876

Nonzero! So (A’A)~! does exist, as we saw.

5.3.5 The general case

Say our data consists of n points, each of which is of length p.
Write the j element of the i*" data point as X;;. Then set

1 Xy o X,
A — 1 X21 e Xp2 (5‘11)
1 Xpp oo Xy

Continue to set S to the length-n column vector of our response
variable. Our model is

E(S|A) = AB

for an unknown vector 3 of length p+ 1. Our estimated of that
vector based on our data will be denoted

b= (bg; by, 0,)

Then, using the same reasoning as before, we have the minimiz-
ing value of b:
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B=(AA)TAS

again providing that the inverse exists.

5.3.6 Example: mlbl data

(5.12)

As an example, let’s take the mlb1 from my qeML (’Quick and
Easy Machine Learning package. The data is on major league Dataset kindly provided by the
baseball players. We will predict weight from height and age. UCLA Dept. of Statistics

library(qeML)
data(mlbl)
head(mlbl)

Position Height Weight

1 Catcher 74 180
2 Catcher 74 215
3 Catcher 72 210
4 First_Baseman 72 210
5 First_Baseman 73 188
6 Second_Baseman 69 176

22.
34.
30.
35.
35.
29.

ourData <- as.matrix(mlbill[,-1]) #

head (ourData)

Height Weight  Age
74 180 22.99
74 215 34.69
72 210 30.78
72 210 35.43
73 188 35.71
69 176 29.39

O O WN -

A <- cbind(1,ourDatal,c(1,3)])
Ap <- t(A)

S <- as.vector(mlbil[,3])
solve(Ap %*% A) %*), Ap %*% S
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Age
99
69
78
43
71
39

must have matrix to enable %x*J


https://github.com/matloff/qeML
https://github.com/matloff/qeML

[,1]

-187.6381754

Height  4.9235994
Age 0.9115326

# check via R
lm(Weight ~ .,data=mlbi[,-1])

Call:
Im(formula = Weight ~ ., data = mlbi[, -1])

Coefficients:
(Intercept) Height Age
-187.6382 4.9236 0.9115

So, if we have a player of known height and age, we would
predict the weight to be

-187.6382 + 4.9236 x height + 0.9115 x age

5.3.7 Homogeneous variance case

In addition to

E(S|A) = AB

Cov(S|A) = 0?1

where o is an unknown constant to be estimated from the data.
This is called the homoskedasticity assumption.

So Var(S;) = o2 for all 4. It is usually not a realistic assump-
tion. Say for instance we are predicting human weight from
height. There should be more variation in weight among
taller people than above shorter people. But it’s a simplifying
assumption, so it is commonly used.
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And in that setting, our formulas from Chapter 4 come in handy,
as follows.

Recall that BA is our estimate of the unknown population param-
eter 3, based on our random sample data. But that means that
B is a random vector, and thus has a covariance matrix. Using
Equation 4.6 with R = (A’A)~!, and recalling the properties
of transpose, we have

Cov(p) = Cov(RA’S) (5.13)
= RA'0* T AR’ (5.14)
=o?(A’A)~! (5.15)

Classical stAatistical formulas use this relation to find standard
errors for 3; etc., to be presented in Chapter 6.

5.4 Update Formulas

One important theme in developing prediction models (linear
regression, neural networks etc.) is the avoidance of overfitting,
meaning that we fit an overly elaborate model to our data. We
simply are estimating too many things for the amount of data
we have, “spreading our data too thin.”

A common example is using too many predictor variables, so
that, e.g. in the linear model case, we are estimating a large
number of coefficients ;.

Or we may draw a histogram with too many bins:
library(qeML)
data(forest500) # data on forest ground cover

hist (forest500$V1,breaks=10)
hist (forest500$V1,breaks=100)
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Fixed-X vs. random-X settings: In
some applications, A is actually
chosen by an experimenter, so that
it is not random, the so-called
fized-X setting. For instance, say we
are predicting children’s height from
age. Under the random-X approach,
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on A. When we derive confidence
intervals in Chapter 6, the
distinction won’t matter. By
Equation 10.5, a conditional
confidence interval, say, at the 95%
level also has that level

unconditionally.
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Histogram of forest500$V1
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In a histogram, we are estimating the heights of the bins. With
10 bins we obtained a smooth graph, but with 100 bins it be-
came choppy. So again, we are estimating too many things,
given the capacity of the data.

With larger datasets, we can use more predictor variables, more
histogram bins, and so on. The question then arises is, for
instance, How many predictors, how many bins and so on, can
we afford to use with our given data?

The typical solution is to fit several models of different com-
plexity, then choose the one that predicts the best. But we
must do this evaluation on “fresh” data; we should not predict
on the same data on which we fitted our model.

We thus rely on partitioning our data, into a training set to
which we fit our model, and a test set, on which we predict
using the fitted model. We may wish to do this several times.
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A special case is the Leaving One Out method, in which the
test set size is 1. It might go like this, for a dataset d:

sumErrs = 0

for i = 1,...,n # dataset has n datapoints
fit 1m to d[-i,]
use result to predict d[i,]
add prediction error to sumErrs

return sumErrs

This can become computationally challenging, as we would
need to refit the model each time. Each call to Im involves a
matrix inversion (or equivalent), and we must do this n times.

It would be nice if we could have an “update” formula that
would quickly recalculate the model found on the full dataset.
Then we would need to perform matrix inversion just once. In
the case of linear models, such a formula exists, in the Sherman-
Morrison-Woodbury relation:

Given an invertible matrix B and row vectors u and v having
lengths equal to the number of columns of B. form the matrix

C=B+w
Then C~! exists and is equal to Note that the quantity uv’ is a
square matrix the size of B, so the
1 sum and product make sense.
-1 _ /713—1@“}/)3—1
1+ v B lu

Now, how can we apply this to the Leave One Out method?
In the matrix A in Equation Equation 5.11, we wish to remove
row ¢; call the result A_;. Our new version of A’A is then

So our main task is to obtain

(A4
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by updating (A’ A)~!, which we already have from our compu-
tation in the full dataset.

We can do this as follows. Denote row i of A by a;, and set

u = —CLZ», V= a/,L
To show why these choices for u and v work, consider the case
in which we delete the last row of A. (The analysis would

be similar for other cases.) Write the latter as a partitioned
matrix,

We pretend it is a 2 x 1 “matrix,” and A’ is then “1 x 2”:

A/ = (Az—n) ’a’;z>

Thus

AA=A" A, +a,a,

yielding

A A =AA—a,a),

just what we need for Sherman-Morrison-Woodbury: With B =
A’ A, we have

1

A/ A 11 = Bil B —
[A%A] + 1—a.B la,

B (a;a)B!

[t}

Let’s check it:
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a <- rbind(c(1,3,2),c(1,0,5),c(1,1,1),c(1,9,-3))
apa <- t(a) %*% a

apai <- solve(apa)

a2 <- al[-2,]

apa2 <- t(a2) %*} a2

apa2i <- solve(apa2)

# prepare for S-M-W

adel <- matrix(a[2,],ncol=1)

wl <= 1/(1 - t(adel) %x% apai %*), adel)
wl <- as.numeric(wl)

uvt <- adel %x% t(adel)

w2 <- apai %*% uvt %% apai

# S-M-W says this will be apa2i

apai + wl * w2

[,1] [,2] [,3]
[1,] 3.4140625 -0.7109375 -1.015625
[2,] -0.7109375 0.1640625 0.234375
[3,] -1.0156250 0.2343750 0.406250

apa2i

[,1] [,2] [,3]
[1,] 3.4140625 -0.7109375 -1.015625
[2,] -0.7109375 0.1640625 0.234375
[3,] -1.0156250 0.2343750 0.406250

5.5 Generalized Linear Models

These are nonlinear models that have a “linear” component to
them. The best known is the logistic (or logit) model. Here our
“Y” is a binary variable, Y =0, 1.

Note first that now
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EY|X=t)=1-PY =1X=1)+0-P(Y =0|X =1t)
(5.16)

—P(Y=1X=1t) (5.17)
(5.18)

So the conditional mean now reduces to a conditional probabil-
ity. This is very useful, e.g. finding the probability that a pa-
tient has a certain disease, given test results and symptoms.

So, what about the “linear component”? Here is the model:

1

where as usual, 8 = (8, By, -, 8,)". The quantity fis

1
t
and the 1 is there to pick up the 3, term. So there is the linear

component, 3'%.

Least-squares computation doesn’t work here, though some
modifications do, e.g. Iteratively Reweighted Least Squares.
This topic is beyond the scope of this book.

5.56.1 Example: census data

This is data for Silicon Valley programmers and engineers in
the 2000 Census.

Let’s predict female gender:

data(svcensus)
head(svcensus)
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age educ occ wageinc wkswrkd gender
1 50.30082 zzzOther 102 75000 52 female
2 41.10139 zzz0ther 101 12300 20 male
3 24.67374 zzz0ther 102 15400 52 female
4 50.19951 zzz0Other 100 0 52 male
5 51.18112 zzz0ther 100 160 1 female
6 57.70413 zzz0ther 100 0 0 male
svcensus$gender <- as.numeric(svcensus$gender == 'female') # Y=0,1
head (svcensus)

age educ occ wageinc wkswrkd gender
1 50.30082 zzzOther 102 75000 52 1
2 41.10139 zzz0ther 101 12300 20 0
3 24.67374 zzzO0ther 102 15400 52 1
4 50.19951 zzz0ther 100 0 52 0
5 51.18112 zzz0ther 100 160 1 1
6 57.70413 zzz0Other 100 0 0

# for simplicity, omit a couple of the columns

glmOut <- glm(gender ~ .,data=svcensus[,-c(2,5)],family=binomial)
coef (glmOut)
(Intercept) age occl01 occl102 occl06

-6.039075e-01

occl140
-8.875065e-01 -1.447660e+00 -6.063449e-06

4.992302e-03 -3.593655e-01 -3.677021e-01 3.938857e-01

occl41 wageinc

The ‘binomial’ value here specifies the logistic model. Others
are available, e.g. Poisson regression.

The direction of influence on “Y” is the same as in the linear
case: A positive coefficient means, holding other predictor vari-
ables fixed, larger values of this variable produce larger proba-
bilities for Y = 1. The most impactful predictors seem to be
occupations 140 and 141, each of which reduces the probability We of course must form confidence
of female.

It should be noted, though, that the amount of impact depends

intervals for a careful analysis, the

topic of Chapter 6.

on the values of the other pedictors, unlike the linear case. A
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popular interpretation of the logit model is the log-odds view,
which forces focus on the linear component:

PY =1|X =¢)

1 =gt
| py—ox =1 ="

However, I have never felt this is helpful. Why on Earth should
we be interested in the log-odds value? And it detracts from the
focus of logit modeling a probability, of central importance.

5.6 Centering and Scaling One’s Data

You often hear data analysts speak of centering and scaling
their data. What does it mean, and why is useful?

e Centering a variable means to subtract its mean. The
new version now has mean 0.

e Scaling a variable means to divide by its standard devia-
tion. The new version now has standard deviation 1.0.

Both operations make variables more comparable, especially
scaling. If say two predictor variables are of different sizes, say
Height and Age in our baseball data above, it’s hard to compare
their BAl values. Scaling them makes things more comparable.

As to centering, this can reduce roundoff error in computations,
and anyway it seems questionable to scale but not center.

Note that if we center not only the “X” variables but also “Y,”
it can be shown this is equivalent to setting a model without
an intercept term [3,. This often simplifies matters in various
ways. Note that in this setting, we do not include a 1s column
in the A matrix.

The R function scale does centering and/or scaling.
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5.7 Your Turn

Your Turn: Show Equation 5.9. Write a = (a4, ...,a;)" and
find the gradient “by hand.” Compare to 2a.

Your Turn: Show that

iu’Qu =2Qu
du

for a constant symmetric matrix @ and a vector u. (u'Qu is
called a quadratic form.)
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6 Confidence Sets
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1 Goals of this chapter:

The reader is probably already familiar with the concept
of a confidence interval (CI). But that is just in one di-
mension. Confidence intervals are even more useful in the
multidimensional setting. In this chapter, we introduce a
fairly general method of forming a CI from multivariate
data, and then extend the notion to confidence sets for un-
known multivariate quantities themselves. As the reader
may have guessed, the word “multivariate” here is a sign
that linear algebra is involved, which will indeed be the
case.

6.1 Review: Confidence Intervals, Standard
Errors

To set the stage, let’s review the statistical concepts of confi-
dence interval and standard error. Say we have an estimator 6
of some population parameter 0, e.g. X for a population mean

1.
Loosely speaking, the term standard error of is our estimate

of 4/ Var(é). More precisely, suppose that 0 is asymptotically
normal. The standard error is an estimate of the standard
deviation of that normal distribution. For this reason, it is

customary to write AVar(6) rather than Var(#). Similarly we
use ACov rather than Cov.

This can be used to form a confidence interval (see below), but
also stands on its own as an indication of the accuracy of 6.

A, say 95%, confidence interval (CI) for p is then

6+ 1.96 SE(A)

where we denote the standard error of 6 by SE(6).

The 95% figure means that of all possible samples of the given
size from the population, 95% of the resulting confidence in-
tervals will contain 6. In many cases, the 95% figure is only

95

Recall the Warning in Section 4.2.2.
Just as Cov can mean either the
covariance between two random
variables or the covariance matrix of
a random vector, the analogous
statement holds for ACov.



approximate, stemming from a derivation that uses the Cen-
tral Limit Theorem.

In general, for confidence level 1 — « replace 1.96 by z,, the
1 — a/2 quantile of the N(0,1) distribution, Then our CI is

0 + z,SE(0) (6.1)

I Note Regarding Sensitivity of Phrasing

There is a bit of drama in this word contain in the phrase
“will contain 6.” Instead of saying the intervals contain
0, why not simply say 6 is in the intervals? Aren’t these
two descriptions equivalent in terms of English? Of course
they are.

But many instructors of statistics classes worry that stu-
dents will take the description based on “in” to mean that
0 is the random quantity, when in fact the CI is random
(random center, random radius) and @ is fixed (though un-
known). The instructors thus insist on the more awkward
phrasing “contain,” so as to avoid students misunderstand-
ing. Indeed some instructors would contend that use of
the word in is itself just plain incorrect.

My own view is that in some cases the word in is clearer
(and certainly correct in any case), and that it is better
to add a warning about what is random/nonrandom than
engage in awkward phrasing.

6.2 The R vcov Function

So, how does one obtain standard errors? In R, in many cases,
they will be provided by the summary function, but we may
need an entire estimated covariance matrix rather than just a
standard error.

Due to the Multivariate Central Limit Theorem, many common
statistical estimators have approximately normal distributions.
In R, functions such as Im, glm, lme and coxph come with an
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associated function vcov. This gives the approximate covari-
ance matrix of the computed estimator, e.g. for the estimated
beta coefficients vector in a linear model. This enables forma-
tion of approximate confidence intervals for not only individual
model parameters but also linear combinations of them, as well
as computing other quantities related to confidence sets. The vcov function is an R generic
function, playing a similar role to
; print, plot, summary and so on.
6.2.1 Example: Iranian churn data Many R statistical functions have
o ) this for their output, including say
Here we use a logistic mode to predict whether a telecom cus-
] ; ; PN . glm. When we make the call

tomer will move to another provider. We obtain AVar(3) using

; veov(glmOut), the R interpreter
the vecov function:

sees that glmOut is of class “glm”
and thus transfers the call to the

data(IranianChurn) . .
class-specific function,

glmOut <- glm(Exited ~ ., data = iranChurn, family = binggiggln(ghnOut) The function
acov <- vcov(glmOut) . .
coef, also used here, is also generic.

acov

(Intercept) CreditScore GeographyGermany GeographySpain
(Intercept) 5.993100e-02 -5.051370e-05 -1.589878e-04 -1.388436e-03
CreditScore -5.051370e-05 7.859301e-08 -2.683572e-07 -2.454056e-07
GeographyGermany -1.589878e-04 -2.683572e-07 4.579770e-03 1.678887e-03
GeographySpain  -1.388436e-03 -2.454056e-07 1.678887e-03  4.989715e-03
GenderMale -1.350817e-03 2.156023e-07 2.008595e-05 -2.200094e-05
Age -2.685656e-04 -7.969688e-09 6.042109e-06 -2.107579e-06
Tenure -4.049072e-04 1.614151e-09 -6.645863e-06  3.828636e-06
Balance -2.936332e-08 1.033099e-13 -1.358788e-08 -2.156656e-11
NumOfProducts -3.775016e-03 -8.271320e-08 -3.655500e-04 -3.357316e-05
HasCrCardl -2.595873e-03 2.066409e-07 -7.611739e-05  3.603876e-05
IsActiveMemberl  5.010389e-04 -3.102862e-07 -1.008754e-04 -3.954646e-05
EstimatedSalary -2.301952e-08 1.070775e-12 -7.124867e-11 -8.778366e-11

GenderMale Age Tenure Balance
(Intercept) -1.350817e-03 -2.685656e-04 -4.049072e-04 -2.936332e-08
CreditScore 2.156023e-07 -7.969688e-09 1.614151e-09 1.033099e-13
GeographyGermany 2.008595e-05 6.042109e-06 -6.645863e-06 -1.358788e-08
GeographySpain  -2.200094e-05 -2.107579e-06 3.828636e-06 -2.156656e-11
GenderMale 2.968982e-03 -4.697135e-06 -7.714322e-06 -9.609423e-10
Age -4.697135e-06 6.633235e-06 -2.330915e-07 4.769766e-11
Tenure -7.714322e-06 -2.330915e-07 8.751351e-05 -1.419504e-11
Balance -9.609423e-10 4.769766e-11 -1.419504e-11 2.644146e-13
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-2.575910e-06 6.486034e-09
-1.356629e-05 6.276417e-10
1.978922e-05 -5.129968e-10
-7.850909e-11 -3.430272e-15
IsActiveMemberl EstimatedSalary

NumOfProducts 5.853316e-05 2.887014e-06
HasCrCardl -8.288460e-06 1.405830e-07
IsActiveMemberl 2.637202e-05 -3.924088e-05
EstimatedSalary 1.976874e-10 1.824674e-11

NumOfProducts HasCrCardil
(Intercept) -3.775016e-03 -2.595873e-03 5.010389e-04
CreditScore -8.271320e-08 2.066409e-07 -3.102862e-07
GeographyGermany -3.655500e-04 -7.611739e-05 -1.008754e-04
GeographySpain  -3.357316e-05 3.603876e-05 -3.954646e-05
GenderMale 5.853316e-05 -8.288460e-06 2.637202e-05
Age 2.887014e-06 1.405830e-07  -3.924088e-05
Tenure -2.575910e-06 -1.356629e-05 1.978922e-05
Balance 6.486034e-09 6.276417e-10 -5.129968e-10
NumOfProducts 2.221635e-03 -3.379445e-06 -3.685755e-05
HasCrCardl -3.379445e-06 3.521179e-03 6.930480e-05
IsActiveMemberl -3.685755e-05 6.930480e-05 3.327629e-03
EstimatedSalary -4.030670e-10 3.401694e-11 2.676211e-10

There are several categorical variables here, so after expansion

to dummies, AVar(f) is 12 x 12. This is the covariance matrix
for the vector of estimated logistic regression coefficients .

Say we wish to compare Germany and Spain. The difference
will be of the form a’3. What should we take for a?

> row.names (acov)

[1] "(Intercept)" "CreditScore"
[56] "GenderMale" "Age" "Tenure"
[9] "NumOfProducts" "HasCrCard1" "IsActiveMemberl"

Ah, we set a to (0,0,1,-1,0,0,0,0,0,0,0,0)". Using Equation 4.7,
we compute the standard error and the CI:

a <- ¢(0,0,1,-1,0,0,0,0,0,0,0,0)
avar <- t(a) %*) acov %*J a

se <- sqrt(avar)

estdiff <- t(a) %*) coef(glmOut)
c(estdiff-1.96%se,estdiff+1.96%se)

[1] 0.5850204 0.8939729
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6.3 The Delta Method

This is one of the most useful simple tools in statistics.

6.3.1 Motivating example
Now as a first example, say we are estimating a population
mean p and are also interested in estimating log(u).

We will probably use the sample mean X to estimate p, and
thus use W = log X to estimate log(u). But how do we obtain
a standard error for W?

6.3.2 Use of the Central Limit Theorem

The Central Limit Theorem tells us that ):( is asymptotically
normally distributed. But what about log X7

From calculus, we know that a smooth function f can be writ-
ten as a Taylor series,

f@) = fzo) + f'(zo)(x — 30) + [ (o) (x — 20)%/2+ ...

where ’ denotes derivative rather than matrix transpose.

In our case here, setting f(t) = logt, x5 = p and x = X, we
have

W = log pu +log (1) (X — p) +log” (u)(X — p)?/2 + ...

and log'(t) = 1/t and so on.

The key point is that as n grows, X — i goes to 0, and (X — )2
goes to 0 even faster. Using theorems from probability theory,
one can show that, in the sense of distribution,

W = log(p) + log’ () (X — )
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interval for log(u), we can form a CI
for p and then take the log of both
endpoints. But again, standard
errors are of interest in their own
right.



The right-hand side is a linear function of X. The latter is
asymptotically normal by the Central Limit Theorem, and thus
the linear function W is also asymptotically normal.

In other words, W has an approximate normal distribution that
has mean log(u) and variance

—o?/n (6.2)

where o2 is the population variance Var(X) . We estimate the
latter by the usual S? quantity, and thus have our standard
error,

S

s.e.(W) = X

6.3.3 Use of the Multivariate Central Limit Theorem

Now, what if the function f has two arguments instead of one?
The above linear approximation is now

fv,w) = f(vg,wy) + f1(vg, wo) (v —vg) + fa(vg, wo) (w — wp)
(6.3)

where f; and f, are partial derivatives,

0
fi(v,w) = 5= f(v,w)

0
fo(v,w) = %f(U;UJ)

So if we are estimating, for instance, a population quantity
(o, B) by (Q, R)’, standard error of the latter is the square
root of
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Note the wording. The distribution
of W is close to a normal
distribution, but mean and variance
formulas here apply to that latter
distribution, not that of W. For
example, E(W) could be far from
Equation 6.2.

A partial derivative of a function of
more than one variable is the
derivative with respect to one of
those variables. E.g.

8/0v vw? = w? and

8/0w vw? = 2vw.



f1(Q, R)AVar(Q) + f3(Q, R)AVar(R) (6.4)

where we have made use of Equation 4.1.

As usual, use of matrix notation can help clean up messy ex-
pressions like this. The gradient of f, say in the two-argument
case as above, is the vector

vy (o)

fa(vg, wy)

so that our above Taylor series Equation 6.3 can be written
as

flv,w) ~ f(vg,wq) + (V) ( v — g )

(Here ’ is matrix transpose, not a derivative.)

Then from Equation 4.7,

AVar[f(Q, R)] = (Vf) ACou(Q, R)(V f) (6.6)

Here ‘ACov’ means the asymptotic covariance matrix of the

vector
wz(g) (6.7)

Let’s call that asymptotic covariance matrix .
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6.3.4 Example: ratio of two means

Often & will be provided by our application software, such as
with R’s vcov function, but we will need to derive it in this
case, using properties of sample means.

Say our sample data consists of mother-daughter pairs,

M

D
representing the heights of mother and daughter. Denote the
population mean vector by

v = ( M )
Hp
We might be interested in the ratio w = pup /pips- Our estimator
will be @ = D/M, the ratio of the sample means.

So take Q = D and R = M:

(%)= (i) 63

Then in Equation 6.6, with f(q,7) = q/r

vi= ( _q%’; )

which in our application here is

vIi= ( —D%\%)

Thus we will need AVar(D), AVar(M) and ACou(D,M).
These quantities are exact, not asymptotic, so we can simplify

our notation, e.g. changing AVar(M) to Var(M).

Be sure to distinguish between population and sample quanti-
ties. For example:
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e Var(M) measures how M varies across all individuals in
the population,

E[(M — EM)?]

We can estimate it via its sample analog;:

Var(M) = 3 (M, — 31)?

which measures how much M varies in our sample. Simi-
larly,

E[(D — ED)?]

measures how much D varies in our sample, and so on.

o« Var(M) measures how M varies across all size-n samples
in the population.

e« We know from statistics that

Var(M) = %Var(M)

Similar properties hold for Var(D) and Cov(D, M):

In other words, we obtain the needed covariance matrix of Equa-
tion 6.8 via the sample analog of Equation 4.3 as

D (W W)W, T (6.9)

where

is the value of W for the i*" daughter-mother pair in our data.
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6.4 Example: Mother/Daughter Height Data

library (WackyData)
data(Heights)
head (heights)

Mheight Dheight

1 59.7 55.1
2 58.2 56.5
3 60.6 56.0
4 60.7 56.8
5 61.8 56.0
6 55.5 57.9

m <- heights[,1]

d <- heights[,2]

meanm <- mean (m)

meand <- mean(d)

fDel <- matrix(c(1/meanm,-meand/meanm”~2) ,ncol=1)
n <- length(m)

sigma <- (1/n) * cov(cbind(m,d))

se <- sqrt(t(fDel) %x*} sigma 7%*% fDel)

se

[,1]
[1,] 0.001097201

meanmd <- meanm / meand
meanmd

[1] 0.9796356

c(meanmd - 1.96%se, meanmd + 1.96%se)

[1] 0.9774850 0.9817861
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6.5 Regarding Those Pesky Derivatives

Though finding expressions for the derivatives in the above
example was not onerous, the function f can be rather com-
plex, with the expressions for its derivatives even more com-
plicated. Typically such tedious and error-prone operations
can be avoided, by having the software calculate approximate
derivatives.

Recall the definition of derivative:

) — tim T W)~ @)

w—0 w

So an approximate value of f’(x) is obtained by choosing some
small value of w and evaluating

[z 4+ w) = f(x)

w

Though of course there is an issue with one’s choice of w, the
point is that one can code the software to find approximate
derivatives automatically using this device. This is very com-
mon in Data Science libraries.

For example, the R package numDeriv will compute numerical
derivatives.

6.6 Scheffe’s Method

In analyzing the Iranian Churn data above, we might form
many Cls, each at the 0.95 level. However, we may wish to set
an overall level to at least 0.95, meaning that the probability
that at least one of the Cls fails to contain the desired popula-
tion value is at most 0.05. This concept is variously known as
multiple inference, simultaneous inference or multiple compar-
isons.

Whether to do this is a philosophical question, and the answer
will depend on one’s goals and personal preferences, or may pos-
sibly be due to requirements of a research journal or employer.
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If we do wish to pursue the matter, then how? One of the most
well-known approaches makes good use of linear algebra.

6.6.1 A confidence set for B in the linear model

It can be shown that if a random vector W has a k-dimensional
normal distribution random vector with mean vector p and
covariance matrix X, then

Q=W —p)S YW —p)

has a chi-square distribution with k degrees of freedom. Say d,,
is the upper-a quantile of that distribution, i.e.

P{(W—p)S ' (W —p) <d ] =1-a

In the case k = 2, the set of all ¢t = (¢, ...,t;)" such that

(t—p)'2 Mt —p) =d,

is an ellipse in the (¢,,t,) plane. (If ¥ = I, we have a circle.)
For k = 3 we have an ellipsoid, a “football,” and so on in higher
dimensions..

Now, in the context of the linear model, take W to be B,
i = [ etc. Here X must be estimated by ) (given to us via
vecov), so we should replace the chi-square distribution by the
F-distribution. But for simplicity, let’s stick with chi-square,
which is a good approximation for large n anyway.

So, the event

B=BTHB-H) <d,
has probability 1 — «. Equivalently, the event

(B—B)YSHB—B) <d, (6.10)

has that probability as well.

106

The chi-square distribution with k
degrees of freedom is defined to be
the distribution of the sum of the
squares of k independent N(0,1)
random variables. After applying
properties such as Equation 4.6, one
can show that the quadratic form

here also has that distribution.

We will use the linear model here for
concretenss, but the same analysis
holds for any asymptotically normal
statistical estimator, e.g. Maximum

Likelihood estimates.



Therefore, the set of all 8 satisfying Equation 6.10
is a 100(1—a) confidence set for the true population

8.

This gives us a confidence ellipse for 8 in two dimensions, a
confidence ellipsoid in three dimensions and so on.

The ellipse library can draw this for us:
library(ellipse)

data(mtcars)
fit <- Im(mpg ~ disp + cyl , mtcars)

Calling

plot(ellipse(fit, which = c('disp', 'cyl'), level = 0.90), type = 'l')

then gives us

-0.5

-1.0

-1.8

cyl
-2.0

-2.5

-3.0

-0.04 -0.03 -0.02 -0.01 0.00

disp
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Here the axes are §,;,, and B,

By the way, note that the smaller « is, the larger will be the
value of d,, thus the larger the ellipse. The reader should pause
to confirm that this makes sense.

However, this is but an intermediate step toward our goal of a
multiple inference method. Our next step will be to set up a
math tool.

6.6.2 Lagrange multipliers

In Chapter 5, we saw the power of matrix derivatives, in our
case to minimize a sum of squares. Here we go one step further,
again doing optimization, but in this case under a constraint.

To this end, we first need to introduce the concept of Lagrange
multipliers.

The context is that we wish to minimize/maximize a quantity
f(w), subject to g(w) = 0, where w is a vector argument. We set
up the expression f(w)+ Ag(w), and find its extreme values.

For instance, say we wish to minimize

flz,y) = 2%+ 2y?

subject to the constraint.

3z +y=28

We form the expression

22+ 2y + A3z +y — 8)

and take partial derivatives with respect to x, y and A:

0=2x+ 3\

0=4y+
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0=3z+y—8

From the first two equations, we have

0=2x—12y

Substituting, we find that

and so on.

The Lagrange multiplier here is A. If we have several con-

straints, we have several multipliers.

6.6.3 Simultaneous confidence intervals for quantities

a’ B

In Section 6.2, we saw how to form confidence intervals for a
quantity a’8. We may wish to form several, or even many,
such intervals. Here is how the Scheffe’ method can make the
intervals simultaneous.

To find a CI for o', we find its maximum and minimum val-
ues subject to 5 being in the ellipsoid, i.e. subject to the con-
straint

(B—B)EHB—B) =d, (6.11)

In other words, we solve the Lagrange multiplier problem

min,mazg, o B+N(B—BYSHB—-H) —d,)  (6.12)

Those max and min values then define our CI.

Let C be a symmetric matrix. The derivative of a quadratic
form v’ Cu with respect to u can be shown to be 2Cu. Differ-
entiating with respect to 5, we thus have
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There is an easily-missed subtlety
here. Our phrasing “subject to 3
being in the ellipsoid” (i.e. either in
the interior or on the boundary) is
at odds with the Langrange
formulation, which stipulates that
the min or max values occur on the
boundary. But the latter property is
implied by the linearity of a’3:
Consider any point g that is strictly
interior to the ellipsoid, so our
objective function has value a’q.
Then there is room for us to move
away from ¢ yet still be inside the
ellipsoid, say to the point u, yet
with a’u either larger or smaller
that a’q, depending on the direction
we move in. So the min or max

cannot be in the interior.



so that

B—f=——%a (6.13)

Solve for A:

1 —~
2\ = + dfa’Ea

«

Finally, recall that the quantity whose min and max interest us
is a’ 3. Using Equation 6.13, we have our CI for a’f,

a'B+ \ d,a'Sa (6.14)

Now, why does this interval hold simultaneously over all a? The
point is that once we know [ is in the ellipsoid, then the above
algebraic computations show that for any a, the quantity o’
will be between a’,@ — \/daa’ia and a/B + \/daa/ia. Again,
this is solely an algebraic property, not a probabilistic one; the
only probabilistic action occurred in S being in the ellipsoid.
Thus Equation 6.14 will hold for all a simultaneously.

However, note that we pay a price for the simultaneity, in that
Equation 6.14 will be wider than the ordinary CI for a’3, using
Equation 6.1,

a'B+z,VaSa

Consider our Iranian Churn data analysis above, with k£ = 12.
Let’s find /d,,, for a = 0.05:
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sqrt (qchisq(0.95,12))

[1] 4.585419

By contrast, z, = 1.96. The Scheffe’ interval is more than twice
as wide. As the saying goes, there is no “free lunch.”

6.7 Your Turn

Your Turn: In the mother/daughter data, find the estimated
covariance between the two heights.

Your Turn:

Write an R function with call form

regFtnCI (1mOut,t,alpha)

that returns an approximate (1 — «) confidence interval for
the conditional mean E(Y|X = t). Here ImOut is the object
returned by a call to Im.

Your Turn:
The geometric mean of a set of n numbers is the n** root of

their product. Write an R function with call form

geoGMxbarybar(x,y,alpha)

that returns an approximate 100(1 — «) percent CI for the pop-
ulation geometric mean of the two numbers E(X) and E(Y),
using the sample analog

&I
<
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7 Matrix Rank
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1 Goals of this chapter:

Many matrices are noninvertible. The subject of this chap-
ter. matrix rank is closely tied to the invertibility issue,
and is central to understanding matrix applications. We
will see in later chapters that the notion of rank is partic-
ularly useful in modern Data Science.

In our computations in the latter part of Chapter 5, we added
a proviso that (A’A)~! exists. In this chapter, we’ll present a
counterexample, which will naturally lead into our covering ma-
trix rank, and in the next chapter, the basics of vector spaces.

7.1 Example: Census Data

data(svcensus)
svc <- svcensus[,c(1,4:6)]
head(svc)

age wageinc wkswrkd gender

1 50.30082 75000 52 female

2 41.10139 12300 20 male

3 24.67374 15400 52 female

4 50.19951 0 52 male

5 51.18112 160 1 female

6 57.70413 0 0 male

lm(wageinc ~ .,data=svc)

Call:

lm(formula = wageinc ~ ., data = svc)

Coefficients:

(Intercept) age wkswrkd  gendermale
-29384.1 496.7 1372.8 10700.8
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So, we estimate that, other factors being equal, men about paid
close to $11,000 more than women. This is a complex issue, but
for our purposes here, how did gender become gendermale,
no explicit mention of women?

Let’s try to force the issue:

svcPman <- as.numeric(svc$gender == 'male')
svcdwoman <- as.numeric(svc$gender == 'female')
svc$gender <- NULL

head(svc)

age wageinc wkswrkd man woman

1 50.30082 75000 52 0 1

2 41.10139 12300 20 1 0

3 24.67374 15400 52 0 1

4 50.19951 0 52 1 0

5 51.18112 160 1 0 1

6 57.70413 0 0 1 0

lm(wageinc ~ .,data=svc)

Call:

lm(formula = wageinc ~ ., data = svc)

Coefficients:

(Intercept) age wkswrkd man
-29384.1 496.7 1372.8 10700.8

Well, we couldn’t force the issue after all. Why not? We hinted
above that A’ A may not be invertible. Let’s take a look.

A <- cbind(1,svc[,-2])
A <- as.matrix(A)

ApA <= t(A) 7x% A

ApA
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1 age wkswrkd man woman

1 20090.0  794580.7 907240 15182.0 4908.0
age 794580.7 33956543.6 35869770 600860.8 193719.9
wkswrkd 907240.0 35869770.5 45252608 692076.0 215164.0
man 15182.0 600860.8 692076 15182.0 0.0
woman 4908.0 193719.9 215164 0.0 4908.0

Is this matrix invertible? Let’s apply the elementary row oper-
ations introduced in Section 3.5.1:

library(pracma)
rref (ApA)

1 age wkswrkd man woman

1 1 0 0 0 1
age 0 1 0 O 0
wkswrkd O 0 1 0 0
man 0 0 0 1 -1
woman 0 0 0 0 0

Aha! Look at that row of 0s! The row operations process ended
prematurely. This matrix will be seen to have no inverse. We
say that the matrix has rank 4 — meaning 4 nonzero rows —
when it needs to be 5. We also say that the matrix is of nonfull
rank.

Though we have motivated the concept of matrix rank here
with a linear model example, and will do so below, the notion
pervades all of linear algebra, as will be seen in the succeeding
chapters.

We still have not formally defined rank, just building intuition,
but toward that end, let us first formalize the row operations
process.

7.2 Reduced Row Echelon Form (RREF) of a
Matrix

We formalize and extend Section 3.5.1.
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7.2.1 Elementary row operations
These are:

e Multiply a row by a nonzero constant.
e Add a multiple of one row to another.

e Swap two rows.

Again, each operation can be implemented via pre-multiplying
the given matrix by a corresponding elementary matrix. The
latter is the result of applying the given operation to the iden-
tity matrix I. For example, here is the matrix corresponding
to swapping rows 2 and 3:

1 00
0 01
010

For example:

e <- rbind(c(1,0,0),c(0,0,1),c(0,1,0))
e

[,11 [,2] [,3]
[1,] 1 0 0
(2,1 0 0 1
[3,] 0 1 0

a <- matrix(runif(12) ,nrow=3)
a

[,1] [,2] [,3] [,4]
[1,] 0.9494635 0.9084006 0.8968606 0.40691779
[2,] 0.3808983 0.9716125 0.2386077 0.06532082
[3,] 0.7758433 0.9581783 0.5169864 0.31278347

e %*% a # matrix mult. is NOT e * a!
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[,1] [,2] [,3] [,4]
[1,] 0.9494635 0.9084006 0.8968606 0.40691779
[2,] 0.7758433 0.9581783 0.5169864 0.31278347
[3,] 0.3808983 0.9716125 0.2386077 0.06532082

Yes, rows 2 and 3 were swapped.

7.2.2 The RREF

By applying these operations to a matrix A, we can compute
its reduced row echelon form A,,.;, which is defined by the
following properties:

e Each row, if any, that consists of all Os is at the bottom
of the matrix.

e The first nonzero entry in a row, called the pivot, is a 1.

e Each pivot will be to the right of the pivots in the rows
above it.

e Each pivot is the only nonzero entry in its column.

The reader should verify that the matrix at the end of Sec-
tion 7.1 has these properties.

7.2.3 Recap of Section 3.5.1

o Each row operation can be performed via premultiplica-
tion by an elementary matrix. Each such matrix is invert-
ible, and its inverse is an elementary matrix.

e Thus

Byt = Ey...E,E B (7.1)
for a sequence of invertible elementary matrices.
e And
B = (E) (Ey) (B Bryeys

where each (E;)~! is itself an elementary row operation.
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7.2.4 Partitioned-matrix view of Reduced Echelon
Forms

It is much easier to gain insight from RREF by viewing it in
partitioned-matrix form:

Say A is of size m X n. Then A, ., has the form

( 13 % ) (7.2)

where I, is an identity matrix of some size s and U
has dimension s x (n — s).

Note that the second partitioned row here, (0,0)
may consist of several actual 0 rows, or none at
all.

The Column-Reduced Echelon Form is similar:

(I, 0
Acref - ( vV 0 ) (73)

where I, is an identity matrix of some size ¢ and V' has dimen-
sion (m —t) x t.

Clearly, the row rank of A, ., is s, and its column rank is ¢.
We will prove shortly that s = t.

7.3 Formal Definitions

Definition: A linear combination of vectors
Uy, Vg, ...V, is a sum of scalar multiples of the
vectors, i.e.

a,vy + ... +aguyg
where the a; are scalars.

(The reader may wish to review Section 2.3.)
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Definition: We say a set of vectors is linearly depen-
dent if some linear combination of them (excluding
the trivial case in which all the coefficients are 0)
equals the 0 vector. If no nontrival linear combi-
nation of the vectors is 0, we say the vectors are
linearly independent.

For instance, consider the matrix

S =
O =~ =

3
9
8
Denote its columns by ¢;, ¢, and c¢5. Observe that

0
(=g + (D)eg + (—2)e3 = 0
0

Then c;, ¢y and c; are not linearly independent.

So, here is the formal definition of rank:

Definition The rank of a matrix B is its maximal
number of linearly independent rows.

As an example involving real data, let’s look again at the census
example,

head(A)

1 age wkswrkd man woman
1 1 50.30082 52 0 1
21 41.10139 20 1 0
3 1 24.67374 52 0 1
4 1 50.19951 52 1 0
5 1 51.18112 1 0 1
6 1 57.70413 1 0
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the sum of the last two columns of A is equal to the first column,
SO

columnl - column4 - columnb = 0

Write this more fully as an explicit linear combination of the
columns of this matrix:

1 columnl + 0 column2 + 0 column3 + (-1) columnd + (-1)
columnd = 0

So we have found a linear combination of the columns of
this matrix, with coefficients (1,0,0,-1,-1), that evaluates to 0.
Though we have defined rank in terms of rows, one can do so
in terms of columns as well:

7.4 Row and Column Rank

We have defined the rank of a matrix to be the number of
maximally linearly independent rows. We’ll now call that the
row rank, and define the column rank to be the number of
maximally linearly independent columns. So for instance the
matrix analyzed at the end of the last section is seen to be of
nonfull column rank.

As will be seen below, the row and column ranks will turn out
to be equal. Thus in the sequel, we will use the term rank to
refer to their common value. For now, though, the unmodified
term “rank” will mean row rank.

7.5 Some Properties of Ranks

In Section 7.1, we found the matrix A’ A to be noninvertible,
as its RREF had a row of 0s. We mentioned a relation to rank,
but didn’t formalize it, which we will do now.

Theorem 7.1. Let A be any matriz, and let V and W be square,
invertible matrices with sizes conformable with the products be-
low. Then the column rank of VA is equal to that of A, and
the row rank of AW is equal to that of A.
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Proof. Say A has column rank r. Then there exist r (and no
more than r) linearly independent columns of A. For conve-
nience of notation, say these are the first » columns, and call
them ¢y, ..., ¢,. Then the first r columns of VA are Vey,...,Ve

by matrix partitioning; call these columns ¢, ..., ¢,..

T

Are these vectors linearly independent? Suppose not. Then
there would exist nontrivial A, such that

MG+ .+ N6 =0

Multiplying both sides by V! then gives us

Aeg+ ..+ Xe,. =0

contradicting the linear independence of the c;.

Thus VA has at least r independent columns, and thus has
column rank at least . But a similar argument shows that if
V A were to have sr independent columns, the same would have
to be true for A, again a contradiction. The V A has the same
column rank as A.

Note that for a vector z, Vo = 0 if and only if z = 0. (Just
multiply Vo = 0 on the left by V~1.) So a linear combination
Acp + ... + Ac, is 0 if and only if the corresponding linear
combination A\;Ve¢; +...+ A Ve, is 0. Thus the vectors Ve, are
linearly independent, and V' A has column rank 7.

The argument for the case of AW is identical, this time involv-
ing rows of A.

O O

Theorem 7.2. The column rank of a matrix B is equal to
the column rank of its RREF, B which in turn is s in
FEquation 7.2.

rref’

Proof. Theorem 7.1 says that pre-postmultiplying B will not
change its column rank. Then invoke Equation 7.1.
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It is clear that any column in U in Equation 7.2 can be written
as a linear combination of the columns of I,. Thus the column
rank of B is s.

O O

Lemma 7.1. An elementary row operation on a matric leaves
the row rank unchanged.

Proof. Let r;,i = 1,...,m denote the rows of the matrix. Con-
sider a linear combination

ary +...+a,r, #0

For any of the three elementary operations, a slightly modified
set of the a; works (i.e. will be nonzero), using the modified
elementary matrix:

 Swap rows ¢ and j: Swap a; and a.

o Multiplying row ¢ by a constant c¢. Since r; — cr;, set
a; — (1/c)a;.

+ Add c times row j to row i: Set a; — a; — ca;.

O O

Theorem 7.3 (The row rank and column rank of a matrix are
equal.).

Proof. The lemma shows that every nonzero linear combination
of the rows of A corresponds to one for the rows of A, ., and
vice versa. Thus the row rank of A is the same as that of 4, ;.
But that is s in Equation 7.2, which we found earlier was equal
to the column rank of A.

O O

In Section 7.1, we found the matrix A’ A to not be of full rank.
It is surprising that so was A:
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qr (ApA)$rank # qr is a built-in R function

(1] 4

gr (A) $rank

(1] 4

This is rather startling. A has over 20,000 rows — yet only 4
linearly independent ones? But it follows from this fact:

Theorem 7.4. The (common value of) row and column ranks
of an m xn matrix B must be less than or equal to the minimum
of the number of rows and columns of B .

Proof. The row rank of b equals its column rank. The former
is bounded above by m while the latter’s bound is n.

O O
Theorem 7.5. The matriz A’ A has the same rank as A.

Proof. Using the column analog of Equation 7.1, we can write

Acref = AF

where F' is an invertible product of matrices for elementary
column operations. Then

(Arref),A'rref) =F"AAF

Theorem 7.1 tells us that the rank of IV A’ A has the same rank
as A’A, and that F” A’ AF has the same rank as F”A’A. The
latter in turn has the same rank as A’ A. So we can concentrate

on (Arref)/Arref) .
Using Equation 7.2, we have
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, (1 U
(A'rref> Arref) - ( U UU )

The presence of I, tells us there are at least s linearly indepen-
dent rows, thus rank at least s. So the rank of A’A is at least
that of A.

On the other hand, again apply our knowlege of partitioning.

e Say Ais m x n. Write

cy c A
AA=| ... |A=
c c, A

n

where the ¢; are the columns of A, thus the rows of A’.

Thus each row ¢; A of A’A is a linear combination of the
rows of A.

Recall that the rank of A’A is its maximal number of
linearly independent rows. We saw above that each row
of A’A is a linear combination of the rows of A. Thus
in turn, each linear combination of the rows of A’A is a
linear combination of linear combinations of rows of A —
still a linear combination of the rows of A!

At most s members of that latter linear combination are
linearly independent. In other words, the rank of A’ A is
at most s.

e Thus the rank of A’A is also s.

7.6 Your Turn

Your Turn: Consider the matrix A in Section 7.3. Using R,
show that Theorem 7.5 does indeed hold for this matrix.

Your Turn: Consider the full Census dataset svcensus ,
with several categorical variables. Use factorsToDummies
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(via the geML package) so that there is a different column
for each level of a categorical variable. E.g. there should be
six columns coming from the original occ. Reason out what
the rank should be of the resulting data matrix, and use R to
verify.

Your Turn: Consider an m X n matrix A with m > n. Then
consider the partitioned matrix

()

where [ is the n x n identity matrix. Explain why B is of full
rank.

Your Turn: Show that a set of vectors is linearly dependent
if and only if one of the vectors is a linear combination of the
others.

Your Turn: Consider the three basic elementary matrices
discussed here: Swap rows ¢ and j; multiply row ¢ by a constant
b; adding ¢ times row i to row j, for a constant ¢. Find general
formulas for the determinants of the three matrices.

Your Turn: Consider a unidirectional graph G of n people,
with an edge from z to y meaning that x has worked for y
at some time. Suppose there are r people whose only work
experience is to work for person 3. What can we then say
about the rank of GWW?
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8 Vector Spaces
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1 Goals of this chapter:

As noted earlier, the two main structures in linear algebra
are matrices and vector spaces. We now introduce the
latter, a bit more abstract than matrices but even more
powerful. We lay the crucial foundation in this chapter.
There won’t be any direct practical applications in this
chapter, but we will then reap the huge benefits of this
material in the applications in the remaining chapters.

8.1 Review of a Matrix Rank Property

In the last chapter, we presented the concepts of matrix row
and column rank, defined to be the maximal number of linearly
independent combinations of the rows or columns of the matrix,
respectively. We proved that

For any matrix B,

rowrank(B) = colrank(B) = rowrank(B,,.;) = colrank(B,,. )

We can say something stronger:

Theorem 8.1. Let V denote the span of the rows of B, i.e. the
set of all possible linear combinations of rows of B. Define V.., ¢
similarly for B, ;. Then

V= ‘/'rref

The analogous result holds for columns.
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Proof. Actually, the theorem follows immediately from our
comment following Lemma 7.1: “every nonzero linear combina-
tion of the rows of A corresponds to one for the rows of A, ,
and vice versa.” This showed a one-to-one correspondence
between the two sets of linear combinations.

O O

So, not only do the two matrices have the same maximal num-
bers of linearly independent rows, they also generate the same
linear combinations of those rows.

The sets V and V.., are called the row spaces of the two ma-
trices, and yes, they are examples of vector spaces, as we will
now see.

8.2 Vector Space Definition

A set of objects W is called a wvector space if it sat-
isfies the following conditions:

e Some form of addition between vectors v and v,
denoted u + v, is defined in W, with the result
that u+v is also in W. We describe that latter
property by saying W is closed under addition.

e There is a unique element called “0” such that
u+0=0+u=u.

e Some form of scalar multiplication is defined,
so that for any number ¢ and any u in W, cw
exists and is in W. We describe that latter
property by saying W is closed under scalar
multiplication

e This being a practical book with just a dash
of theory, we’ll skip the remaining conditions,
involving algebraic properties such as commu-
tativity of addition (u+ v = v+ u).
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8.2.1 Examples
8.2.2 R"

In the vast majority of examples in this book, our vector space
will be R"™.

Here R represents the set of all real numbers, and R” is simply
the set of all vectors consisiting of n real numbers. In an m x k
matrix the rows are members of R™ and the columns are in
RF.

8.2.3 The set C(0,1) of all continuous functions on
the interval [0,1]

Here elements of the vector space are functions, as in calculus.
Each function is an object in the vector space. Vector addition
and scalar multiplication are done as functions. If say u is the
square root function and v is the sine function, then for example
3u is the function

fl) = 3209

and u + v is defined to be
f(x) = 2% + sin(x)

8.2.4 A set RV (Q2) of random variables

This vector space will consist of all random variables X defined
on some probability space €2, with the additional restriction
that E(X?) < oo, i.e. X has finite variance.

Consider the example in {Section 5.3.6} on major league base-
ball players. We choose a player at random. Denote weight,
height and age by W, H and A. Since the player is random,
these three quantities are random variables.

Vector addition and scalar multiplication are defined in a
straightforward manner. For instance, the sum of H and A
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is simply height + age. That is a random variable, thus a
member of this vector space.

This may seem like a rather nonsensical sum, but it fits the
technical definition, and moreover, we have already been doing
things like this! This after all is what is happening in our
prediction expression from the baseball data, e.g.

predicted weight = —187.6382 + 4.9236 H + 0.9115A

In fact, in this vector space, the above is a linear combination
of the random variables 1, H and A. (1 is a nonrandom con-
stant, but still counts as a random variable.) Note that random
variables such as HW 2 and so on are also members of this vec-
tor space, essentially any function of W, H and A is a random
variable and thus in this vector space.

8.3 Subspaces

Say W, a subset of a vector space W, such that W, is closed
under addition and scalar multiplication. W, is called a sub-
space of W. Note that a subspace is also a vector space in its
own right.

8.3.1 Examples

R3:

For instance, take W, to be all vectors of the form (a,b,0).
Clearly, W, is closed under addition and scalar multiplication,
so it is subspace of R3.

Another subspace of R3 is the set of vectors of the form (a,a,b),
i.e. those vectors whose first two element are equal. The reader
should check that this set of vectors is closed under addition
and scalar multiplication, thus is a subspace of R3.

What about vectors of the form (a,b,a+b)? Yes.

We saw earlier that the row space of an m x n matrix A, con-
sisting of all linear combinations of the rows of A, is a subspace
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of R™. Similarly, the column space, consisting of all linear
combinations of columns of A, is a subspace of R".

Another important subspace is the null space, the set of all x
such that Az = 0. The reader should verify that this is indeed
a subspace of R™.

C(0,1):

One subspace is the set of all polynomial functions. Again, the
sum of two polynomials is a polynomial, and the same holds for
scalar multiplication, so the set of polynomials is closed under
those operations, and is a subspace.

RV(Q):

The set of all random variables that are functions of H, say, is a
subspace of RV (£2). Another subspace is the set of all random
variable with mean 0.

8.3.2 Span of a set of vectors

As noted earlier, the span of a set of vectors G = vy, ..., v, is the
set of all linear combinations of those vectors. It’s a subspace
of the main space that the v, are members of.

8.4 Basis

Consider a set of vectors u,,...u, in a vector space W. Recall
that the span of these vectors is defined to be the set of all
linear combinations of them. In verb form, we say that uq,...u,
spans W if we can generate the entire vector space from those
vectors via linear combinations. It’s even nicer if the vectors
are linearly independent:

We say the vectors uq,...u, in a vector space W

form a basis for W if they are linearly independent
and span W.

Note that subspaces are vector spaces in their own right, and
thus also have bases.
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8.4.1 Example: R3:

The vectors (1,0,0), (0,1,0) and (0,0,1) are easily seen to be a
basis here. They are linearly independent, and clearly span R3.
For instance, to generate (3,1,-0.2), we use this linear combina-
tion:

(3,1,-0.2) = 3(1,0,0) + 1(0,1,0) 4 (—0.2)(0,0,1)

But bases are not unique; for instance, the set (1,0,0, (0,1,0),
(0,1,1) works equally well as a basis for this space (as do in-
finitely many others). For instance,

(3,1,—0.2) = 3(1,0,0) + 1.2(0,1,0) + (—0.2)(0,1,1)  (8.1)

We refer to the coefficients in those linear combinations as co-
ordinates (evoking the old “(X,Y} coordinates” in elementary
algebra courses). In the first example above, we say:

The coordinates of the vector (3,1,-0.2) with respect
to the basis (1,0,0), (0,1,0) and (0,1,1) are 3, 1.2 and
-0.2.

A basis for the subspace of vectors of the form (a,a,b) is (1,1,0)
and (0,0,1).

8.4.2 Infinite-dimensional vector spaces

Note too that we have implictly assumed above that our vector
spaces here are finite-dimensional, i.e. that any basis consists
of finitely-many vectors (r in the above definition). This need
not be the case.

Example: Poly(0,1)

This is the space of all polynomials defined on the interval [0,1],
such as f(t) = 2.5t and g(t) = t'* — 12 —#5 + ¢t + 1. Vector
addition and scalar multiplication can be defined in the obvious
manner, e.g.
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h(t) = 2f(t) + 3g(t) = 3t13 — 3t12 — 3t5 + 2t + 3

A natural basis is

u;(t) =t', i=1,2,3,... (8.2)

C(0,1):

There is no basis here, finite or infinite. But with more so-
phisticated mathematics, something like an infinite basis can
be formed. A full account would be beyond the scope of this
book.

But just to tantalize the reader, we point out that under the
more general definitiion, Equation 8.2 is actually a basis for
C(0,1)! Again, there are mathematics niceties that must be
filled in, but it turns out that any continuous function on a
finite interval can be approximated by some polynomial, with
as close a degree of approximation as we want. Basis is then
defined in the context of approximation.

RV (Q):

The situation here is the same as for C(0,1).

8.5 Dimension

Geometrically, we often refer to what is called R® here as “3-
dimensional’” We extend this to general vector spaces as fol-
lows:

The dimension of a vector space is the number of
vectors in any of its bases.

There is a bit of a landmine in that definition, as it presumes
that all the bases do consist of the same number of vectors.
This is true, but must be proven. We will not do so here, and
refer the interested reader to the elegant proof by AF Beardon
(Algebra and Geometry, 2005, Cambridge).
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8.6 Linear Transformations

Consider vector spaces V; and V,. A function f whose input is
in V; and output is in Vj is called a transformation (or map)
from V| to V.

An important special case is that in which f is linear, i.e.

flav +bw) = af(v) + bf(w)

for all scalars a and b, and all vectors v and w in V.

A further important special case is that in which V; and V,, are
R™ and R™, respectively. Then it can be shown that there a
some m x n matrix A that does the work of f, i.e.

flz) = Ax

for all z in R™.

Note that it is not necessarily true that a linear transforma-
tion will be one-to-one (injective), meaning that x # y implies
f(x) # f(y). Nor is it necessarily onto (surjective), i.e. thst for
any w in R™, there exists some v such that f(v) = w.

To see that the first is false, consider the matrix A above. If say
f(v) = w then we will also have f(v+s) = f(v) + f(s) = w for
any s in the null space of A, a contradiction if A’s null space
consists of more than the 0 vector. The reader is encouraged to
verify that the second property also does not necessarily hold
either.

8.7 Your Turn

Your Turn: In the vector space C(0, 1), consider the subset
of all polynomial functions of degree k or less. Explain why
this is a subspace of C'(0,1). What is its dimension? Give an
example of a basis for this subspace, for k = 3.

Your Turn: Say U and V are subspaces of W. Explain
why U NV is also a subspace, and that its dimension is at
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most the minimum of the dimensions of U and V. Show by
counterexample that the result does not hold for union.

Your Turn: Citing the properties of expected value, E(),
show that the set of all random variable with mean 0 is a sub-
space of RV (Q).

Your Turn: Prove that the coefficients in a basis representa-
tion are unique. In other words, in a representation of the vec-
tor z in terms of a basis u4, ..., u,,, there cannot be two different
sets of coefficients ¢y, ..., c,, such that c;uy + ... +c,u,, = z.
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9 Inner Product Spaces
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1 Goals of this chapter:

The usefulness of vector spaces is greatly enhanced with
the addition of an inner product structures. We motivate
and define such structures here, and present applications.
Among other things, we will analyze a method for re-
moving racial, gender etc. bias in machine learning al-
gorithms.

The material in this chapter will be crucial to the remain-
ing chapters. Extra attention on the part of the reader
will yield major dividends.

9.1 Geometric Aspirations

You may recall from your high school geometry course the key
concept of perpendicularity, represented by the symbol. You
may also recall that in 2-dimensional space, given a point P
and a line L, the line drawn from point P to the closest point
P’ within L is perpendicular to L. The same is true if L is a
plane. The point P’ is called the projection of P onto L.

This was shown in this book’s cover, shown here:
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Figure 9.1: Projections

The point at the end of the green vector is projected onto the
mustard-colored plane, a subspace, producing the red vector.
It in turn is projected onto the blue line, the latter being a
subspace of the mustard-colored one. There are right angles in
each case.

The early developers of linear algebra wanted to extend such
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concepts to abstract vector spaces. This aids intuition, and has
very powerful applications.

0.2 Definition

You may have seen dot products in a course on vector calculus
or physics. For instance, the dot product of the vectors (3,1,1.5)’
and (0,5,6)’ is

3x0 + 1x5 + 1.5x6 = 14

This in fact is a standard inner product on R?, but the general
definition is as follows.

An inner product on a vector space V, denoted by the “angle
brackets” notation < w,v >, is a function with two vectors as
arguments and a numerical output, with the following proper-
ties:

o Ju, v >=<v,Uu >
e The function is bilinear:
<u,av+bw >=a <u,v>+b<u,w>

o <u,u> > 0, with equality if and only if u = 0.

9.3 Examples

9.3.1 R

As noted, ordinary dot product is the most common inner prod-
uct on this space.

< (aq,...,a,),(by,.... b, >=a;b; +... +a,b,

But other inner products may be defined. For instance, say an
n x n matrix A is positive definite (Equation 4.9). Then it is
easily seen that the function
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g(q,r) = q' Ar

fits the definition of inner product.

9.3.2 C(0,1)

One inner product on this space is

<flg>= / f(Dg(t) dt
0

For instance, with f(t) = t? and g(t) = sin(t), the inner product
can be computed with R:

f <- function(t) t~2

g <- function(t) sin(t)

fg <- function(t) f(t) * g(t)
integrate(fg,0,1)

0.2232443 with absolute error < 2.5e-15

This clearly fits most requirements for inner products, but what
about < f, f >= 0 only if f = 0?7 A non-0 f will have f2(¢) > 0
for at least one ¢, and by continuity, f?(¢) > 0 on an interval
containing that ¢, thus making a nonzero contribution to the
integral and thus to the inner product.

9.3.3 RV(Q)

We will focus on the subspace RV (2),, of random variables that
have mean 0, and take covariance as our inner product:

< U,V >=Cou(U,V) = E[(U — EU)(V — EV)] = E(UV)
(9.1)

The properties of expected value, e.g. linearity, show that the
requirements for an inner product hold.
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9.4 Norm of a Vector

This concept extends the notion of a the length of a vector, as
we know it in R? and R3.

Definition:
The norm of a vector x, denoted ||z||, is
(< z,z>)05

The distance from a vector x to a vector y is

|y — ]

9.5 Sets of Orthogonal Vectors

We say that vectors w and v are orthogonal if < u,v >= 0.
This is the general extension of the notion of perpendicularity
in high school geometry.

If the set of vectors uq,...,u, form a basis for a vector space,
it is called an orthogonal basis. If each u,; has length 1 (which
we can arrange by dividing by its norm), the set is called an
orthonormal basts.

9.6 The Cauchy-Schwarz Inequality

Theorem 9.1 (Cauchy-Schwarz Inequality). Say u and v are
vectors in an inner product space. Then

| <, 0> [ < ul] [Jv]

Proof. See the Your Turn problem below. O
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9.6.1 Application: Correlation

Correlation coefficients are ubiquitous in data science. It is well
known that their values fall into the interval [-1,1]. Let’s prove
that.

In Chapter 4, in introducing the notion of the covariance be-
tween two random variables, we remarked that covariance is
intuitively like correlation, but that the latter is a scaled form.
Formally,

_ E[(X — EX)(Y — EY)]
pIXY) = VVar(X)y/Var(Y) ©-2)

By dividing the covariance by the product of the standard de-
viations, we obtain a unitless quantity, i.e. free of units such as
centimeters and degrees.

Now, say X and Y are in RV (Q2),. Recalling our inner product
for this space, we have

< X,Y >= E(XY)
and
1X]]? =< X, X >= E(X?) = Var(X)

with the analogous relations for Y.

Cauchy-Schwarz then says

|E(XY)| < /Var(X)y/Var(Y)

which says the correlation is between -1 and 1 inclusive.
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9.7 The Triangle Inequality

In the world of ordinary physical geometry, we know the fol-
lowing

The distance from A to B is less than or equal to the sum of
the distances from A to C and C to B. This is true as well in
general, abstract inner product spaces.

Theorem 9.2 (Triangle Inequality). In a general inner product
space,

|z =zl <[lz —yll + |ly — =]l

Proof. See the Your Turn problem below. O

9.8 The Pythagorean Theorem

That this ancient theorem in geometry still holds in general
inner product spaces is a tribute to the power of abstraction.

Theorem 9.3. If vectors X and Y are orthogonal, then

1X + Y12 = [|X]] + |[Y]? (9:3)

Proof. Replace the norms by expression in inner products. Sim-
plify using properties of inner product. O

9.9 Your Turn

Your Turn: Consider the space C(0,1). For function f and
g of your own choosing, verify that the Cauchy-Schwarz and
Triangle Inequalities hold in that case.

Your Turn: Derive the Cauchy-Schwarz Inequality, using the
following algebraic outline:
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The inequality

0 < <(au+v),(au+v)>

holds for any scalar a.

Expand the right-hand side (RHS), using the bilinear
property of inner products.

Minimize the resulting RHS with respect to a.

Collect terms to yield

<0 >2< [l P[]

Your Turn: Use the Cauchy-Schwarz Inequality to prove the
Triangle Inequality, using the following algebraic outline.

Start with

lJu+v||? =< (u+v,u+v >

Expand the RHS algebraically.

Using Cauchy-Schwarz to make the equation an inequal-
ity.
Collect terms to yield the Triangle Inequality.

Your Turn: Explain why any set of orthogonal vectors is
linearly independent.
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10 Projection Operators
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1 Goals of this chapter:

Here we go into detail on the tremendous value derived
by viewing certain operations as projections.

10.1 Projections

As mentioned, the extension of classical geometry to abstract
vector spaces has powerful applications. There is no better
example of this than the idea of projections.

10.1.1 Projection Decomposition

Recall that we say that vectors uw and v are orthogonal if <
u,v >= 0. Then we have the following:

Theorem 10.1 (Projection Theorem). Consider an inner prod-
uct space V', with subspace W. Then for any vector x in'V', there
is a unique vector z in W, such that z is the closest vector to x
in W. Furthermore, x — z is orthogonal to any vector r in W.

We say that z is the projection of z onto W.

Proof. The full proof is beyond the scope of this book, as it re-
quires background in real analysis. Indeed, even the statement
of the theorem is not mathematically tight.

O O
In the case of R™, It will be seen shortly that for each W in the

theorem, there is a matrix Py, that implements the projection,
i.e.

z = Py

Now consider a subspace W of an inner product space V. The
set of vectors having inner product 0 with all vectors in W is
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denoted W+. It too is a subspace, and jointly W and W+ span
all of V.

We then have the famous relations:

Theorem 10.2. Say the vector x is in R™, and W is a subspace
of the latter. Then there is a matriz Py, such that

o Pyx is the projection of x onto W.

e x can be uniquely represented as a sum of two orthogonal
terms, one in W and the other in W+:

U

Note that projection operators are idempotent, meaning that if
you apply a projection twice, the effect is the same as applying
it once. In the matrix equation above, this means P2, = Py, .
This makes sense; once you drop down to the subspace, there
is no further dropping down to that same space.

10.2 Orthogonal Complements and Direct
Sums

From Theorem 10.1, we know that for any x in V, one can
uniquely write

T =1, + Ty (10.1)

where x; and x, are in W and W+, respectively.

Say uy,...,u, and vy,...,v, are bases for W and W+. Then in
Equation 10.1, we can generate z, from the u; and z, from the
v;. So together these two sets of vectors form a basis for all of
V. Typically they are chosen to be orthonormal. (Section 10.5
shows how we can convert the u; and x, to an orthonormal

basis for V.)
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Finally, we say that V is the direct sum of W and W+, denoted
V =W @ W+, and that the two subspaces are orthogonal com-
plements of each other.

10.3 Projections in the Linear Model

The case of the linear model will deepen our understanding, and
will lead to a method for outlier detection that is commonly
used in practice.

10.3.1 The least-squares solution is a projection

Armed with our new expertise on inner product spaces, we see
that Equation 5.7 is

<S—Ab,S— Ab > (10.2)
in the vector space R", where n is the number of our data
points.

As usual, let p denote the number of columns of A, and write
[ for the value of b that minimizes Equation 10.2.

Keep in mind, we are minimizing Equation 10.2 with respect
to b. The set W of all Ab, as b varies, is a subspace of R". In
minimizing Equation 10.2, we are finding the value of b that
makes Ab closest to S. That means that the minimizing Ab is
the projection of S onto W.

Then from Theorem 10.2, we have that
S— AB
is orthogonal to AB. In other words, it must be true that

Z AiB(Si - AZB) =0
i=1

where A, denotes row i of A.
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10.3.2 The “hat” matrix

Recall Equation 5.10, which showed the general solution to our
linear regression model:

~

B=(AA)1A'S

The projection itself, i.e. the matrix P,z in Section 10.1, is
then

AB= A(A’A)TA’S = HS

where

H=AAA)TA
As discussed above, H projects S onto the space of all Ab. It
is called the hat matriz.

As a projection, H is idempotent, which one can easily verify
by multiplication. H is also symmetric.

10.3.3 Application: identifying outliers

An outlier is a data point that is rather far from the others. It
could be an error, or simply an anomalous case. Even in the
latter situation, such a data point could distort our B, so in
both cases, identifying outliers, and possibly removing them, is
important.

Let h,; denote element 4 of the diagonal of H, and again with
A; denoting row ¢ of A. One can show that
hy; = A;(A’A)~1A] (10.3)

The quantity h,; is called the leverage for datapoint i, with the
metaphor alluding to the impact of datapoint ¢ on /.

Using the material on circular shifts in Section 2.11.3, we
have
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for A of size n x p.

Thus the average value of the n quantities h;; is p/n. Accord-
ingly, we might suspect that A, is an outlier if h;; is consider-
ably larger than p/n.

For example, let’s look at the Major League Baseball player
data we’ve seen earlier (Section 5.3.6):

library(qeML)
data(mlbil)
ourData <- as.matrix(mlbi[,-1]) # must have matrix to enable %%

A <- cbind(1,ourDatal,c(1,3)])
dim(A)

[1] 1015 3

S <- as.vector(mlbil[,3])
H <- A %%} solve(t(A) %x% A) %x% t(A)

Let’s take a look:

hist(diag(H))

The ratio p/n here is 3/1015, about 0.003. We might take a
look at the observations having h;; above 0.01, say.

10.4 Matrix Form of Projections in R"

Our main question in this section:

Say we have a subspace W of R"™, and a vector z in
V. How do we find the projection of x in W?
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Call the projection z, and let uq, ..., u;, be an orthonormal basis
for W. Then there exist a, ..., a; such that

2= AUy + ...y Fa,u (10.4)
We can find z by first finding its coordinates a, with respect to
the u;, as follows. . Below, keep in mind that x is known

but z is not. We desire a method by

which we can find z from z.

10.4.1 Exploiting orthonormality

We do have a hint to work from: We know that x — z is orthog-
onal to every vector in W — including the w,. So

0=<z—2u >=<z,u; >— < 2zu; >

and thus

<T,u; >=<z,u; >

Since < z,u; >= a;, we have

_ _ /7
a; =< T,U; >= U;T

In partitioned matrix forms, the vector a of the coordinates of
z is

So, we’re almost done! We wanted to determine the coordinates
a; of z in Equation 10.4, and now we see that we can easily
obtain them by calculating < x,u, >. Our projection z is

a

(uy]..Juy,)
ay,
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Combining the last two equations, we have

i
z=(uqg|...]ug) | .. |z=QQx

up,
Wrapping up:

Theorem 10.3 (Calculating a Projection Matrix). Given: a
subspace W of R™ with orthonormal basis uy, ..., uy; and a vector
x in V. Then the projection of x onto W is equal to QQ’zx,
where Q) is the matrixz whose columns are the u;.

10.5 The Gram-Schmidt Method

As seen in the last section, it is desirable to have an orthogonal
basis, and it’s even more convenient if its vectors have length
1 (an orthonormal basis). As noted, converting to length 1 is
trivial — just divide the vector by its length, but how do we
obtain an orthogonal basis? In other words, if we start with a
basis by, by, ..., b,,, how can we generate an orthonormal basis

b
from this?

The Gram-Schmidt Method

Say we have a basis by, ..., b;, for some vector space.
Convert it to an orthonormal basis as follows.

1- Set u1 — bl/HblH

2. For each ¢ = 2,...,k, find the projection g of
b, onto the subspace generated by uq,...,u;_;.
Set u; to b; — ¢, and normalize it.

Wy does this work? Let W denote the subspace generated by
Uy, ..., u;_;. Since ¢ is the projection of b, onto W, b; —q will be
orthogonal to W, thus to u, ...,u;_; — exactly what we need.
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10.6 Projections in RV (Q),

Here is a good example of how a very abstract vector space be-
comes useful in practical applications, such as will be presented
in Section 10.7. The material is rather involved, consisting of
computation of various probabilistic quantities. Since RV (§2),
is a vector space of random variables, each entity is both a ran-
dom variable and a vector. Sometimes the latter will be the
focus, sometimes the former. We request the reader’s patience
in following this duality.

Recall first the definition of inner products in this space, Equa-
tion 9.1, a connection between the notion of covariance in prob-
ability theory and the notion of inner product in linear alge-
bra.

< U,V >=Cov(U,V) = E[(U— EU)(V — EV)] = E(UV)

Among other things, this implies:

1 Orthogonality and Uncorrelatedness

Recall from Equation 9.2 that correlation is the quotient of
covariance and the product of standard deviations. Thus
random variables U and V in RV (2),. are uncorrelated
if and only if they are orthogonal as vectors.

10.6.1 Conditional expectation
It will turn out that in RV (2),, projections take the form of
conditional means. Let’s see how that arises.

One of the Your Turn problems at the end of this chapter covers
this setting:

Say we roll a die once, producing X dots. If X =
6, we get a bonus roll, yielding B additional dots;
otherwise, B=0. Let Y = X 4+ B.
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The basic form, conditioning value specified:

Now, what is E(Y|B = 2)? If B = 2, then we got the bonus
rol, so X=6andY =X+ B=28:
E(Y|B=2)=38

Similarly,

E(Y|B=3)=9

and so on.

But what about E(Y|B = 0)7 In that case, Y = X so

1
P(Y=ilB=0)=P(X=ilX#6)=¢, i=12345

We then have E(Y|B = 0) = 3.

So our answer is

3 1=0

E(Y|B=1i) =
¥ ) {mwisz&¢5

The random variable form:

The quantity E(Y|B = i), a number, can be converted to a
random variable, in the form of a function of B, which we will
call ¢(B). Write

3 B=0
q(B) =
6+B B=12345

It is standard to denote ¢(B) by E(Y|B) — without ‘= 1.

B is random, so ¢(B) is also random. In other words, E(Y|B)
is a random variable.

We need one more thing:
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The Law of Iterated Expectation:

For random variables U and V, set

R = E[V|U]
Then
E(R)=E(V)
More concisely:
E[E(V|U)] = E(V) (10.5)

Intuitive explanation: Say we wish to compute the mean height
E(H) of all students at a university. We might ask each depart-
ment D to measure their own students, and report to us the
resulting mean E(H|D). We could then average all those de-
partmental means to get the overall mean for the university:

E[E(H|D)] = E(H)

Note, though that that outer E() (the first ‘E’) is a weighted
average, since some departments are larger than others. The
weights are the distribution of D.

10.6.2 Projections in RV (Q2),: how they work

Consider random variables X and Y in RV (2),, and consider
the subspace W consisting of all functions of X. (By definition,
this means that each such function, say g(X), has finite variance
and mean 0.)

Theorem 10.1 talks of a closest vector C in W to Y. Let’s see
what form C' would take in this vector space.

Remember, the (squared) distance from Y to C' is

)Y =C|P=<Y —-C,Y —C >= E[(Y — C)?]
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By Equation 10.5, that last term is

E[E((Y = C)?|X)]

For any random variable T of finite variance, the minimum
value of E[(T — d)?] over all constants d is attained by taking
d to be the mean of T', i.e. d = E(T). (See Your Turn problem
below.) So, the minimum of E((Y — C)?|X), for all random

variables C', is attained by the conditional mean,

C = B(Y|X)

In other words:

Projections in RV (Q2), take the form of conditional
means. Here, the projection of Y onto W is
E(Y|X).

Moreover:

Since the difference between a vector and its projec-
tion onto a subspace is orthogonal to that subspace
we have:

The vector Y — E(Y|X) is uncorrelated with
E(Y|X). In other words, the prediction error (also
called the residual) has 0 correlation with the
prediction itself.

10.7 Application: Fairness in Algorithms

COMPAS is a software tool designed to aid judges in deter-
mining sentences in criminal trials, by assessing the probability
that the defendant would recidivate. It is a commercial product
by Northpointe.

COMPAS came under intense scrutiny after an investigation
by ProPublica, which asserted evidence of racial bias against
black defendants compared to white defendants with similar
profiles. Northpointe contested these findings, asserting that
their software treated black and white defendants equally.
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It should be noted the ProPublica did not accuse Northpointe
of intentional bias. Instead, the issue largely concerns prozies,
variables that are related to race, rather than race (or gender
etc.) itself. If for example COMPAS were to use a person’s
ZIP code as a predictor, that might be correlated with race,
and thus would be unfair to use in prediction.

Let S denote a vector of one or more sensitive variable, e.g. race.
The point here is that, due to proxies, we cannot solve the
problem by simply removing S from our analysis; we would
still be using correlates of S.

This book of course does not take a position on the specific
dispute between Northpointe and ProPublica. The above is
simply a motivational example.

10.7.1 Setting

We consider prediction of a variable Y from a feature vector
X and a vector of sensitive variables S. The target Y may be
either numeric (in a regression setting) or dichotomous (in a
two-class classification setting where Y =1 or Y = 0). We will
consider only the numeric case here.

Our goal is to eliminate the influence of S.

10.7.2 The method of Scutari et al

The basic assumption (BA) amounts to (Y, X, S) having a mul-
tivariate Gaussian distribution, with Y scalar and X being a
vector of length p. Again, all variables are assumed centered,
by subtracting their means, so that they now have mean 0.

Let’s review the material in Section 4.3: Say we have W with a
multivariate normal distribution, and wish to predict one of its
components, Y, from a vector X consisting of one or more of
the other components, or linear combinations of them. Then:

o The distribution of Y| X is univariate normal.
o E(Y|X=t) is a linear function of ¢.
o Var(Y|X=t) is independent of ¢.
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One can also show that,

e Though having 0 correlation does not in general imply
statistical independence, it does so in the multivariate
normal case.

One first applies a linear model in regressing X on S,

E(X|S)=~'S

where 7 is a length-p coefficient vector. Here we are predicting
the predictors (of Y'), seemingly odd, but as a first step in
ridding ourselves from the influence of S.

Now consider the resulting prediction errors (residuals),

U=X-—+'S
U can be viewed as the part of X that is unrelated to S; think
of U as “having no S content.” U is a vector of length p.

Note the following:

o From Section 10.6.2, E(X]|S) is the projection of X onto
the subspace of all functions of S.

e X — E(X|S) (original vector minus the projection) is or-
thogonal to S.

e That is,

0=<85,X—EX|S) > (10.6)
= E[S"(X — E(X]9))] (10.7)
= E(S'U) (10.8)
= Cov(S,U) (10.9)

e Thus S and U are uncorrelated.
e Due to the BA, that means S and U are independent.

e In other words, our intution above that U “has no S con-
tent” was mathematically correct.
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o Bottom line: Instead of predicting Y from X, use U as the
predictor vector. This will enable truly S-free prediction.

Goal achieved.

10.8 Your Turn

Your Turn: Consider the space C(0,1). For function f and
g of your own choosing, verify that the Cauchy-Schwarz and
Triangle Inequalities hold in that case.

Your Turn: Show that for any random variable @) of finite
variance, the minimum value of E[(Q — d)?] over all constants
d is attained by taking d to be the mean of @, i.e. d = E(Q).
Hint: First expand (Q — d)? as Q% — dQ + d?.

Your Turn: In the die rolling example, verify that

E[E(Y[B)] = E(Y)

by calculating both sides.

Your Turn: Say we roll a die once, producing X dots. If X =
6, we get a bonus roll, yielding B additional dots; otherwise,
B =0. Let Y = X+ B. Verify that X and B satisfy the Cauchy-
Schwarz and Triangle Inequalities, and also find p(X, B).

Your Turn: Derive the Cauchy-Schwarz Inequality, using the
following algebraic outline:

e The inequality

0 < <(au+v),(au+v) >

holds for any scalar a.

o Expand the right-hand side (RHS), using the bilinear
property of inner products.

e Minimize the resulting RHS with respect to a.
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o Collect terms to yield

<0 >2< [l P[] 2

Your Turn: Use the Cauchy-Schwarz Inequality to prove the
Triangle Inequality, using the following algebraic outline.

e Start with

Ju+v||? =< (u+v,u+v>

Expand the RHS algebraically.

o Using Cauchy-Schwarz to make the equation an inequal-
ity.
e Collect terms to yield the Triangle Inequality.

Your Turn: Consider a set of vectors W = vy,...,v, in an
inner product space V. Let u be another vector in V. Show
that there exist scalars aq, ..., a, and a vector v such that

U= a1V + ... +av, +v

with

<w,v; >=0 for all i
Your Turn: Consider the quadratic form 2’ Pz. Explain why,
if P is a projection matrix, the form equals || Pz||?.

Your Turn: Explain why any set of orthogonal vectors is
linearly independent.

Your Turn: Prove that the vector Y — E(Y|X) is uncorre-
lated with E(Y|X)
Your Turn: For X and Y in RV (Q),, prove that

Var(Y) = E[Var(Y|X)] + Var[E(Y|X)],
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first algebraically using Equation 10.5 and the relation
Var(R) = E(R?) — (E(R))?, and then using the Pythagorean
Theorem for a much quicker proof. As before, assume X and
Y are centered.

Your turn: Show that Equation 10.3 holds.

Your Turn: Consider the space RV (£2),. In order for the
claimed inner product to be valid, we must have that if <
X, X >=0, then X must be the 0 vector. Prove this.

Your Turn: Say V is R"”. Form the matrix A whose columns
are the u,;, and let P = AA’. Show that

Pr=<uwz,u; >u + ..+ <x,u, > u

so that P thereby implements the projection.

Your Turn: Let A be an m x n matrix. Consider the possible
inner product on R™ defined by < z,y >= 2’ A’ Ay. State a
condition on A that is necessary and sufficient for the claimed
inner product to be value, and prove this.

Your Turn: Show that for any vector w and symmetric
matrix M, the quadratic form w’ Mw > 0.

Your Turn: Say in C(0, 1) we want to approximate functions
by polynomials. Specifically, for any f in C(0,1), we want to
find the closest polynomial of degree m or less. Write functions
to do this, with the following call forms:

gsc01(f,m) # performs Gram-Schmidt and returns the result
bestpoly(f,gsout) # approx. f by output from gscOl

Hint: Note that the set of polynomials of a given degree or less
is a subspace of C'(0,1). Also since the vectors here are func-
tions, you’ll need a data structure capable of storing functions.
An R list will work well here.

Your Turn: We noted that projection matrices in R™ are
idempotent. Prove the converse, i.e. that any idempotent ma-
trix A must be a projection to some subspace. Hint: Try the
column space of A.
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11 Four Fundamental Spaces
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1 Goals of this chapter:

This chapter will introduce four subspaces considered cen-
tral to linear algebra.

11.1 The Four Fundamental Subspaces of a
Matrix

Let us first define four fundamental subspaces for any m x n
matrix A:

o row space(A), R(A): {z’A} (all linear combinations of
rows of A)

o column space(A),C(A): {Az} (all linear combinations
of columns of A)

o null space(A), N(A): {z: Az =0}
o left null space(4) = N(A"): {x:2"A=0}

The null space is also called the kernel of A, viewing the matrix
as a function from R™ to X"™; what vectors are mapped to 07

We will use ‘dim()’ to indicate vector space dimension, and
‘rank()’ for matrix rank. Following are a few important facts
about these spaces.

Theorem 11.1.

rank(A) = dim(R(A))
Proof. Parallel to the column space proof below. ]

Theorem 11.2.

rank(A) = dim(C(A))
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Proof. Let zq,...,%, be a maximal linearly independent set of
columns of A, where r is the rank of that matrix. Then this
set is in C(A), and in fact must span that subspace. If not,
there would be some vector z outside the span of z,..., z,,
i.e. no linear combination of those vectors would equal x. Then

21,y 2Zp, & Would be a linearly independent set, contradicting

the maximal nature of the z;.

In other words, the z; form a basis for C(A), and thus the
dimension of that subspace is r.

O O

Theorem 11.3. The C(A) and N (A) subspaces are closely re-
lated:

(a)

C(A'): = N(A)
(b)

dim(C(A")) + dim(N(A)) = n

Proof. Say w is in V(A). Using partitioning, we have

() (2

where a; is row ¢ of A. Thus w is orthogonal to the rows of A,
thus to the row space of A. The latter is the column space of
A’. Thus N(A) is a subset of C(A’)*. This argument works
exactly in reverse, so claim (a) is established.

Claim (b) follows from (a) by forming an orthonormal basis
q1,---,q, for C(A’), then extending it to one for all of R™,
Qs Qpy Qysts > Q- Claim (a) then implies that ¢, q,...,q,,
is a basis for N (A).

O O
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12 Shrinkage Estimators
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1 Goals of this chapter:

In the previous chapter, we introduced the norm of a vec-
tor. In many data science applications, solutions with
smaller norms may be more accurate. This led to the de-
vlopment of two widely-used data analytic tools, as we
will see here.

12.1 Classic View of Shrinkage Estimators:
Multicollinearity

The notion of multicollinearity was the original motivation for
shrinkage estimators. It refers to settings in which the following
concerns arise:

e One column of the matrix A in Equation 5.10 is nearly
equal to some linear combination of the others.

e Thus A is nearly not of full rank.
e Thus A’A is nearly not of full rank.

e Thus B is unstable, in the form of high variance.
12.1.1 The Cause of multicollinearity
The matrix A’A has a very important interpretation, both in

the present context and others that will arise in later chap-
ters:

1 A’A as a Measure of Relations between the Predictor
Variables

Roughly speaking, the row 4, column j element of A’A
is an indicator of the strength of the relation between
predictor variables ¢ and j. If we center and scale our
data (Section 5.6), then that element is exactly n times
the (sample) correlation between these two predictors.

166



To see this, recall the definition of (population) correlation,
Equation 9.2. Substituting sample analogs for population quan-
tities, we have the sample estimate,

SxSy

ﬁ:

If we center and scale the data, the sample means become 0
and the sample standard deviations become 1, yielding

n

P % S (X, V) (12.1)

m=1

Now take X and Y to be columns ¢ and j of A in Equation 5.10.
The element (7, j) in A’ A) is exactly Equation 12.1, without the
% factor.

In other words, multicollinearity arises in settings in which at
least some of the predictor variables are highly correlated.

12.1.2 The Variance Inflation Factor

Earlier, we noted that due to multicollinearity, “,é is unstable,
in the form of high variance.” That point is often quantified
by the Variance Inflation Factor. To motivate it, consider the
“R-squared” value from linear regression analyis, which is the
squared correlation between true “Y” and predicted “Y”. Let
RJZ denote that measure in the case of predicting column j of
A from the other columns. The quantity

1

VIF; = 1=

J
then measures negative impact due to multicollinearity on esti-
mating 8. The intuition is that if, say, column 3 of A can be
predicted well using a linear model, then that column is approx-
imately equal to a linear combination of the other “X” columns.
This is worrisome in light of the problems described above.
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Needless to say, the word “nearly” above, e.g. in “nearly not
of full rank,” is vague, and leaves open the question of “What
can we do about it?” We will present several answers to these
questions in this and the succeeding chapters.

12.2 Example: Million Song Dataset

Let’s consider the Million Song Dataset, varous versions of
which are on the Web.

Ours is a 50,000-line subset of the one with 515345 rows and 91
columns. The first column is the year of release, followed by 90
columns of various audio measurements. The goal is to predict
the year, V1, from the audio variables V2 through V91.

The function regclass::VIF will compute the VIF values for
us.

library(WackyData)

data(MillSong50K) # loads sb50

lmout <- 1m(V1 ~ .,data=s50)

library(regclass)

VIF (1lmout)
V2 V3 V4 V5 V6 V7

3.215081 2.596474 4.236853 7.414375 1.534492 5.844729
V10 Vi1 Vi2 V13 Vi4d V15

2.072851 3.673590 4.705886 1.708520 2.446279 2.827296
V18 V19 V20 V21 V22 V23

2.634033 9.472261 4.217311 7.147952 5.122114 7.984860
V26 Va7 V28 V29 V30 V31

1.818596 1.758043 3.879968 1.663670 2.108174 2.321385
V34 V35 V36 V37 V38 V39

3.011534 2.040587 2.760111 2.879667 1.918229 2.176048
Va2 V43 Va4 V45 V46 Va7

1.704259 2.138794 1.690651 1.556782 1.817380 3.000759
V50 V51 V52 V53 V54 V55

2.496121 1.612253 2.042571 2.208492 1.723669 2.024290
V58 V59 V60 Vel V62 V63

2.004260 2.998469 2.074152 3.410124 2.153116 1.378160
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V8

.794018

V16

.672250

V24

.675134

V32

.056017

V40

.074103

Va8

.547592

V56

.016403

V64

.270617

Vo

.192805

V17

.409782

V25

.591586

V33

.8564913

Va1

.946859

V49

.140282

V57

.033654

V65

.502543



V66 ve7 V68 V69 V70 V71 V72 V73
2.581171 1.725809 2.167673 2.379354 2.062862 1.703360 2.036596 1.984427
V74 V75 V76 vr7 V78 V79 V80 Va1l
2.557163 1.465020 1.515436 2.260728 1.840509 2.078497 3.604771 1.595064
V82 V83 V84 V85 V86 V87 V88 V89
2.528307 2.005876 2.283956 1.448379 1.895053 1.601004 1.581099 2.252362
Voo Vo1
1.332590 1.570891

As a rough guide, values of VIF about 5.0 are considered con-
cerning by many analysts. Under that criterion, variables V5,
V7, V17 and so on look troublesome.

What can be done? One simple approach would be to delete
those columns from the dataset. This is indeed is a common so-
lution, but another is ridge regression, which we present next.

12.3 Ridge Regression

In a seminal paper, Hoerl and Kennard presented a new ap- Technometrics, February 1970
proach to the problem of multicollinearity of predictor variables
in a linear model.

12.3.1 The ridge solution

Their solution is simple: Add some quantity to the diagonal of
A’ A. Specifically, Equation 5.10 now becomes

B=(AA+N)TA'S (12.2)
where A is a positive number chosen by the analyst. Here A
has dimensions n x p, and I is the p x p identity matrix.

Why do this? Say some linear combination of the rows of A’ A
is nearly 0. The same linear combination of the rows of I will
be nonzero, so we avoid near-singularity.
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12.3.2 Matrix formulation

Using partitioned matrices helps understand ridge. Replace A

and S by
A
Anew = ( )\0.51 )

and

S
Snew_< O)

where 0 means a vector consisting of p 0s. In essence, we are
adding artificial data here, consisting of p new rows to A, and p
new elements to the vector S. So Equation 12.2 is just the result

of applying Equation 5.10 to A4,,.,, and S,.,. For example,
using matrix partitioning, we have
Al LA A’|\0-5 A AA
new‘inew — ( |)\ I) )\0.5] = + AT

Loosely speaking, we can think of the addition of AI to A’ A as
making the latter “larger”, and thus making its inverse smaller.
In other words, we are “shrinking” S towards 0, hence the title
of this chapter, Shrinkage Estimators. This effect is made even
stronger by the fact that we added 0Os data to S. This will be
made more precise below.

12.3.3 Example: Million Song dataset

We will use glmnet, one of the most widely-used R packages.

library(glmnet)
x <= sb0[,-1]
y <= s50[,1]

glmOut <- glmnet(x,y,
alpha=0, # ridge
lambda=0.1)

coef (glmOut)
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91 x 1 sparse Matrix of class "dgCMatrix"

s0
(Intercept) 1.952611e+03
V2 8.573258e-01
V3 -5.589618e-02
V4 -4.521365e-02
V5 8.939743e-04
V6 -9.630525e-03
V7 -2.075296e-01
V8 -4.753624e-03
V9 -9.733144e-02
V10 -6.383153e-02
Vi1l 2.778348e-02
V12 -1.486791e-01
Vi3 -1.326579e-02
Vi4 4.756877e-02
V15 3.197157e-04
V16 -4.765018e-04
Vi7 4.951670e-04
V18 5.276124e-04
V19 1.254372e-03
V20 1.518736e-03
V21 2.206416e-03
V22 -4.304329e-04
V23 5.792964e-04
V24 7.717453e-03
V25 3.205090e-03
V26 -3.527333e-03
V27 4.785205e-05
V28 1.510325e-03
V29 2.996810e-04
V30 6.384049e-04
V31 -2.560997e-04
V32 -4.861561e-04
V33 -6.250266e-04
V34 -3.757523e-03
V35 3.563733e-04
V36 1.288622e-03
V37 -4.417041e-03
V38 -2.502325e-04
V39 9.405005e-04
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V40 1.490186e-03

V41 -1.534097e-03
V42 -1.510983e-03
Va3 -1.777780e-03
Va4 -1.814201e-03
V45 -1.865966e-03
V46 -1.107727e-03
Va7 5.906898e-03
V48 6.578124e-04
V49 -2.040170e-03
V50 4.795372e-04
V51 1.162657e-03
V52 6.164815e-04
V53 -9.613775e-04
V54 1.571230e-03
V55 -1.230929e-03
V56 -1.395143e-03
V57 2.158453e-04
V58 -1.975641e-03
V59 2.039760e-03
V60 -1.302405e-03
Vel 6.875221e-04
V62 -3.480975e-03
V63 -3.285816e-03
V64 -9.199332e-03
V65 1.283424e-03
V66 -1.444237e-03
ver -5.957302e-05
V68 1.139299e-03
Ve9 -9.805816e-04
V70 -3.734949e-03
V71 -5.127353e-03
V72 -1.071399e-03
V73 1.808175e-04
V74 -1.034781e-05
V75 4.315147e-03
V76 3.382526e-03
vr7 1.111779e-02
V78 3.162072e-04
V79 -4.565407e-03
V80 3.729735e-05
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V81l 2.362107e-04

V82 -9.349464e-04
V83 -2.846584e-04
V84 1.439897e-03
V85 1.360484e-03
V86 2.442744e-02
V87 -6.838186e-04
V88 8.555403e-04
V89 -3.329155e-02
Voo -1.793489e-03
Vo1 -3.614719e-05

We had earlier flagged variable V5 as causing multicollinear-
ity. As noted then, we could simply exclude it, but here under
ridge, we see that it has been assigned a very small regression
coefficient compared to many of the others.

So, did the estimated coefficient vector shrink?

12norm <- function(x) sqrt(sum(x~2))
bh01<- coef (glmOut)
12norm(bh01)

[1] 1952.612

bhOLS <- coef(1lm(Vl ~ .,s50)) # OLS means Ordinary Least Squares
12norm(bhOLS)

[1] 1951.028

No, the vector got larger!

The culprit is the intercept term, [;0:

bh01[1]

[1] 1952.611
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bhOLS [1]

(Intercept)
1951.028

12norm(bh01[-1])

[1] 0.9080075

12norm(bhOLS[-1])

[1] 0.9451025

The rest of the vector did shrink (though not necessily element-
by-element).

Actually, we should have centered and scaled “X” before apply-
ing ridge, since the predictors are of such different magnitudes.
This also makes the intercept 0.

sb0a <- s50

sb0al[,-1] <- scale(s50[,-1])

s50al[,1] <- s50al,1] - mean(sb0al,1])

bh01<- coef (glmnet(s50al[,-1],s50a[,1],alpha=0,lambda=0.1))
12norm(bh01)

[1] 7.570367

bhOLS <- coef(1m(V1 ~ .,sb0a))
12norm(bhOLS)

[1] 7.886902

Again, the coefficients vector shrank.
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12.4 Choosing the Value of )\

So, how do we choose A7 We need to note a very important
principle first.

12.5 P-hacking, Both in Hypothesis Testing
and Generally

“In a set of 10,000 randomly typing monkeys, one of them will
accidentally type a Shakespearian sonnet.”

Some readers have heard this before in the context of p-hacking,
in which an analyst poses a large collection of research ques-
tions, and runs a statistical hypothesis test on each of them.
Even if the null hypothesis is true for all of them, each will
have a 5% chance of being rejected, and since there are many,
the chance is high that at least one will be rejected and declared
“significant,” even if H is true.

This problem arises in many, many Data Science contexts, and
a good analyst must be vigilant to recognize the potential to
mislead. In our context here, if we look at many values of A,
one of them may by accident look very promising, e.g. result in
very good prediction accuracy on our training set yet actually
overfit.

12.6 Cross-validation

A common way to choose among models is cross-validation: We
set aside a subset of the data, known as the holdout or test set,
for use in assessing predictive accuracy. The remaining data is
the training set. For each of our competing models — in this
case, competing values of A — we fit the model on the training
set, then use the result to predict the test set. We then use
whichever model — again, in this case whichever value of A —
does best in the test set.
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The test set serves as “fresh data,” simulating how our fitted

model might do in the real world (assuming our data is repre-
sentative of the real world). Predicting on the training set is
not as good, since our fit was by design tailored to that data.

We still run the risk of p-hacking, but cross-validation works
well as long as we keep the problem in mind. This topic will
come up in future chapters as well.

12.7 Example: Million Song Data

> library(glmnet)
> glmOut <- cv.glmnet(x=as.matrix(s50[,-1]),y=s50$V1,alpha=0)

> glmOut

Lambda Index Measure SE Nonzero
min 0.2474 100 89.44 0.9201 90
1se 0.9987 85 90.28 0.9823 90

The X value that gave the smallest Mean Squared Prediction Er-
ror (MSE) was 0.2474. (Coincidentally, it was also the smallest
value that the function tried; see glmOut$lambda.)

A more conservative value of A was 0.9987, the largest A giving
MSE within one standard error of the minimum; it’s conserva-
tive in the sense of being less likely to overfit (p-hacking); its
MSE value, 90.28, was only slightly larger than the best one.

In each case, all 90 predictors had nonzero coefficient estimates.
This part of the output will usually not be very meaningful
for the ridge case, and is aimed mainly at the LASSO, to be
presented later in this chapter.

We can then predict as usual. Say we have a song similar to

that in s50[1,], but with V2 equal to 25.0.

z <- s50[1,-1] # exclude Y
z[1,1] <- 25.0
predict (glmOut,z)
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sO
[1,] 2003.235

The year of release is predicted to be 2003.

12.7.1 Example: Census data

One can even apply ridge to situations of exact dependence
among the columns of X, as opposed to the original motivation
of dealing with approzimate linear dependence.

We saw such a setting in Section 7.1. There we deliberately
induced exact linear dependence by inclusion of both male and
female dummy variables. Let’s apply ridge:

library(qeML)

data(svcensus)

svc <- svcensus[,c(1,4:6)]

# force having both male and female columns
svc$man <- as.numeric(svc$gender == 'male')
svc$woman <- as.numeric(svc$gender == 'female')
svc$gender <- NULL

a <- svc[,-2] # the A matrix

a <- as.matrix(a)

lambda <- 0.1

# apply ridge procedure

betahat <- solve(t(a) %#*) a + lambda * diag(4))
betahat %*% t(a) %*) as.matrix(svc$wageinc)

[,1]
age 496.6716
wkswrkd  1372.7052
man -18677.8751

woman -29378.3086

The results essentially are the same as what we obtained by
having only one dummy, thus no linear dependence: Men still
enjoy about an $11,000 advantage. But ridge allowed us to
avoid deleting one of our dummies. Such deletion is easy in
this case, but for large p, say in the hundreds or even more,
some analysts prefer the convenience of ridge.
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12.8 Modern View of Shrinkage Estimators

There are many ways to deal with multicollinearity other than
shrinkage, and indeed, these days discussions of shrinkage sel-
dom mention multicollinearity. Instead, the goal of shrinkage
is dimension reduction, meaning to reduce the complexity of a
model in order to avoid overfitting. The LASSO, introduced
below, does this explicitly, while ridge accomplishes it via pure
size reduction.

We will discuss this further in Section 12.11. Let’s start by
addressing the point of what we really mean by “shrinkage.”

12.9 Formalizing the Notion of Shrinkage

How in the world did statisticians develop an interest in shrink-
ing estimators? A watershed event occurred in the early 1980s,
when the statistical world was shocked by research by James
and Stein that found, in short, that:

Say W has g-dimensional normal distribution with mean vector
p and independent components having variance o2, each. We
have a random sample of size n, i.e. n independent observations
on W. Then if ¢ > 3, in terms of Mean Squared Estimation
Error, the best estimator of x is NOT the sample mean W.
Instead, it’s a shrunken version of W,

~(@=2)0%/n\ =
g e ) (123)

The quantity within the parentheses is typically smaller than
1, giving us the shrinkage property. Note, though, that with
larger n, the amount of shrinkage is minor.

In the case of linear regression, a version of shrinkage works
there too, with ¢ being the number of columns in the A ma-
trix.

So, let’s view the issue of shrinkage more formally, first for ridge
and later for the LASSO.

178



12.9.1 Shrinkage through length penalization

Say instead of minimizing Equation 5.7, we minimize

(S — AbY/(S — Ab) + A||b]|? (12.4)

We say that we penalize large values of b, an indirect way of
pursuing shrinkage. Now take the derivative and set to 0:

0= A'(S — Ab) + \b (12.5)

i.e.

(APA+ XD)b=A'S
and thus

f=(AA+N)IA'S

It’s ridge! Exactly what we had in Equation 12.2. So ridge,
originally motivated by “almost singular” settings, also turns
out to be justified as a shrinkage estimator..

12.9.2 Shrinkage through length limitation

Instead of penalizing ||b||, we could simply constrain it, i.e. we
could set our optimization problem to:

minimize (S — Ab)’(S — Ab), subject to the constraint ||b[|* <
~

We say that this new formulation is the dual of the first one.
One can show that they are typically equivalent.
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12.10 The LASSO

The LASSO (Least Absolute Shrinkage and Selection Operator)
was developed by Robert Tibshirani in 1996, following earlier
work by Leo Breiman and Tin Kam Ho. It takes 5 to be the
value of b that minimizes

(S — Ab) (S — Ab) + A||b]|4 (12.6)

where the “11 norm” is

P
16l = 1
=1
We will write our original norm as ||b|.

This is a seemingly minor change, but with important implica-
tions. What the researchers were trying to do was to obtain
a sparse B , i.e. a solution with lots of Os, thereby providing
a method for predictor variable selection. This is important
because so-called “parsimonious” prediction models are desir-
able.

12.10.1 Properties

To that end, as noted above, it can be shown that, under some
technical conditions, that the ridge solution minimizes

(S — Ab)'(S — Ab)

subject to the constraint

[1bll2 <~

while in the LASSO case the constraint is

[1blly <~
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As with X in the original formulation, + is a positive number
chosen by the analyst.

12.11 Ridge vs. LASSO for Dimension
Reduction

Today’s large datasets being so common, we need a way to
“cut things down to size,” i.e. dimension reduction, aimed at
reducing the number of predictor variables. This is done both
for the sake of simplicity and to avoid overfitting, in which
fitting an overly complex model can reduce predictive power.

12.11.1 Geometric view

Comparison between the ridge and LASSO concepts is often
done via this graph depicting the LASSO setting:
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Figure 12.1: LASSO sparsity

Here p = 2, with b = (by,b,)’. The horizontal and vertical
axes represent b; and b,. Which point in the graph will be the

LASSO solution (by,by)" = (B1,LASSO752,LASSO>/7

Reason as follows.

o The constraint ||b||; < 7 then takes the form of a dia-
mond, with corners at (v,0), (0,7), (—v,0) and (0,—7).
The constraint ||b||; < 7 requires us to choose a point b
somewhere in the diamond, including the boundary.

o The concentric ellipses depict the values of ¢(b) = (S —
Ab)’ (S — Ab), as follows.

— Consider one particular value of ¢(b), say 1.68.
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— Many different points b in the graph will have ¢(b) =
1.68; in fact, the locus of all such points is an ellipse.

— There is one ellipse for each possible value of ¢(b).
So, there are infinitely many ellipses, though only
two are shown here.

— Larger values of ¢(b) yield larger ellipses.

— By the way, the common center of these ellipses is
the ordinary (i.e. non-shrunken) least squares (OLS)
solution By g, and the smallest ellipse has ¢(b) equal
to the OLS sum of squares.

On the one hand, we want to choose a b for which ¢(b)
— our total squared prediction error — is small, thus a
smaller ellipse.

But on the other hand, we need at least one point on the
ellipse to be in common with the diamond.

The solution is then a point b in which the ellipse just
barely touches the diamond.

Picture in your mind an ellipse, say the inner one in the
graph, growing larger and larger, while retaining the same
center and orientation, until it hits the diamond. That is
the outer ellipse, which indeed hits the diamond at one
of the corners.

Note that each of the four corners of the diamond repre-
sents a sparse solution. For instance, the point (0,7) has
bl — O.

Then picture other ellipses, at other centers with other
orientations, and go through the same process in your
mind’s eye. You will see that typically the solution turns
out to be one of the corners. Again, this is important
because it gives us a sparse solution.
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12.11.2 Implication for dimension reduction.

Again, the key point is that that “barely touching” point will be
one of the four corners of the diamond, points at which either
by = 0 or by = 0 — hence a sparse solution, meaning one in
which many/most of the coefficients in the fitted model will be
0. This achieves the goal of dimension reduction.

Ridge will not produce a sparse solution. The diamond would
now be a circle (not shown). The “barely touching point” will
almost certainly will be at a place in which both b, and b, are
nonzero. Hence no sparsity.

12.11.3 Avoidance of overfitting without dimension
reduction

As we’ve seen, both ridge and LASSO reduce the size of the ﬂA
vector of estimated coefficients. Smaller quantities have smaller
statistical variances, hence a guard against overfitting. So,
ridge can be employed as an approach to the overfitting prob-
lem, even though it does not provide a sparse solution.

Moreover, in some settings, it may be desirable to keep all
predictors, as seen in the next section.

12.12 Example: NYC Taxi Data

The purpose of this data is to predict trip time in the New
York City taxi system. The qeML package includes a 10,000-
row subset.

library(qeML)
data(nyctaxi)
head (nyctaxi)

trip_distance PULocationID DOLocationID tripTime DayOfWeek

2969561 1.37 236 43
7301968 0.71 238 238
3556729 2.80 100 263
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7309631 2.62 161 249
3893911 1.20 236 163
4108506 2.40 161 164
dim(nyctaxi)

[1] 10000 5

length(unique (nyctaxi$PULocationID))

[1] 143

length(unique (nyctaxi$D0LocationID))

[1] 205

If we fit, say, a linear model, Im will form a dummy variable
for each of the pickup and dropoff locations. Thus we will have
p = 14143420541 = 350. An old rule of thumb says that if we
have p predictors and n data points, we should keep p < \/n
to avoid overfitting. As we will see in a later chapter, these
days that rule is being questioned, but it is still useful. Since
here we have y/n = 100, there is a strong suggestion that we
do some dimension reduction.

Thus we either should delete some of the pickup and dropoff

variables, or use all of them but temper the fit using ridge.

The latter may be more attractive, as riders would like a time
estimate for their particular pickup and dropoff locations.

library(glmnet)

nycwide <- factorsToDummies(nyctaxil[,-1])

glmOut <- cv.glmnet(x=nycwide,y=nyctaxil[,1],alpha=0)
glmOut
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Call: cv.glmnet(x = nycwide, y = nyctaxi[, 1], alpha

Measure: Mean-Squared Error

Lambda Index Measure SE Nonzero
min 0.3002 100 2.983 0.1467 356
1se 0.9169 88 3.110 0.1551 356

The best A\ value was found to be 0.3002. But as noted above,
we might use the more conservative value, 1.0063, to try to
avoid p-hacking.

12.13 Iterative Calculation

An advantage of ridge over LASSO and other 11 shrinkage esti-
mators is that the former has an explicit (we say closed-form)
solution, which is not the case for the LASSO. In fact, as will be
seen often in this book, many algorithms in statistics/machine
learning lack closed-form solutions, in which case one must re-
sort to iterative computation.

These means we make a series of guesses as the to value of the
desired quantity, hopefully each more accurate than the last,
eventually settling on a final guess.

This may or may not work well. Here are some of the major
issues/perils:

e choice of initial guess
e updating method

e learning rate

e convergence

e presence or lack of calculus derivatives

The basic idea is to first (somehow) make some guess as to the
value of the desired quantity, say B in the LASSO. The algo-
rithm crunches this to make a new, updated guess, hopefully
one that is more accurate than the first. One then updates the
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new guess, continuing this process until, hopefully, it converges,
meaning that it no longer changes much from one iteration to
the next. The current guess is then deemed to be the correct
value.

The case of computation of the LASSO is further complicated
by its being based on the [; norm, which in turn uses abso-
lute values, i.e. |z|. These have no derivative in the calculus
sense, say as used in Equation 12.5 for ridge. This is a problem
because many iterative methods are based on derivatives, as
follows.

Say we have a function f whose root r is of interest to us.
We might make a series of guesses for r by considering the
derivative f’. This is illustrated in the figure below. Unknown
to us, r = 2. Our current guess is x = 3. We draw [’ i.e. the
tangent line to the curve at our current guess, and temporarily
pretend that the line is the curve. We thus compute the root
for the line, which is seen here to be near 2.0, and then take this
tangent root as our updated guess for the root of the curve.
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Figure 12.2: root hunting

Some machine learning algorithms have a parameter called the
learning rate, which is motivated by a concern that the process
may overshoot the root, or converge to the wrong root. . A
smaller learning rate value directs the algorithm to take smaller
steps in generating new guesses. In this case, we might go only
partway to the tangent root. On the one hand, this can slow
the computation but on the other, we may be less likely to over-
shoot the true value. On the other hand, if we are concerned
about settling on the wrong root, we might set a large value for
the learning rate.

At any rate, if the quantity f that we are working with does
not have a derivative, our work is extra difficult.

At first one may think that such internal details of computation
need not concern the end user of the software. But the fact is
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that often an algorithm will fail to converge, and the user will
need to get more directly involved, say in trying a different
value for the initial guess.

So, if say glmnet fails to converge, what can be done? For
example, in glmnet, the argument thresh defines what we
meant by our phrasing “no longer changes much”; we can de-
crease or even increase that value. One can make sure to center
and scale the X data. Tweaking other parameters may help as
well, such as changing the updating method. (In fitting neural
network models, there are actually many different methods to
choose from.) But in the end, there are no magic solutions. It
may well be that one’s basic model is flawed.

12.14 The Kernel Trick and Kernel Ridge
Regression

How often do you see a named trick in a math book? Well,
there is indeed one here, one that is of great practical value.

12.14.1 Polynomial Regression

The world is not linear, not even approximately so. Thus early
in the development of statistics, analysts started using poly-
nomial models. To predict human weight from height, for in-
stance, one might fit the model

E(weight|height) = 8, + 3, height + S,height?

The key point is that this is still a linear model. Though it is
a nonlinear function of height, it is linear in the §;. If say, we
multiple all the 3, by 2, the value of the above expression is
doubled. In Equation 5.6, we now would tack on a column con-
sisting of the V;2, but E(C|V') would still be a linear expression
in (:

E(C|V) = AB = By + B,V + ,V?
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Nice, but the size of our model grows rapidly. Say we predict
weight from not only height but also age. Then our matrix
A will have columns not only for height and height-squared,
but also age and age-squared, as well as height times age. In
my machine learning book , there is an example in which A
originally had 54 columns, but with a polynomial model of
degree 2, the number of columns grew to 1,564!

This is especially problematic in the case p > n, which is in-
creasingly common these days, and motivates the following ma-
terial.

12.14.2 The Kernel Trick

We will first introduce a computational shortcut, and then the
Kernel Trick itself. Our context will be ridge regression.

Using some algebraic manipulation, Equation 12.2 can be
shown to be equivalent to

B=A(AA + \I)1S

Note that the product AA’ will be n x n, as opposed to our
original p x p product A’A. With p > n, this change means a
large saving in memory storage space and computation time.

But we reap even larger benefit by looking at fitted or predicted
values. Let z,,.,, be a matrix of “X” values at which we wish
to predict “Y,” in the same format as the rows of X. Then the

fitted/predicted values are

T = T A (AA 4 A = [, AN(AA + A1)

new

What is so special about this expression, or more specifically,
the two bracketed expressions? The answer is that every major
computation here is a dot product:

e Inz,.,,A", we are taking dot products of rows of z,,,,
and rows of A.
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e In AA’, we are taking dot products of rows of A and rows
of A.

The idea of the Kernel Trick is to replace dot products by kernel
computations. In computing AA’, for example, denote row 7 of
A by a;. Then we replace the expression for the row ¢, column
j element of AA’,

a;a’ (12.7)

k(a;,a;)

(2]
Here k is a kernel function satisfying

o k is a symmetric function in its arguments, and
e k is nonnegative definite.

The latter is a generalization of nonnegative definite ma-
trices. If we have a set of vectors uy, ..., u, and form the
matrix having its row 4, column j value equal to k(u,,u;),
then the matrix is required to be nonnegative definite.

What does that give us? Suppose we wish to do polynomial
regression of degree 2. As noted above, we could add the ap-
propriate columns to the A matrix, thus applying the transfor-
mation (e.g. for the case p = 2),

x— o(x) = (zq, :L‘%,$2,$%,331$2> (12.8)

We say that ¢ lifts us from our ambient space (i.e. original
space, dimension p) to a desired higher-dimensional space, the
latent space.

But again, this would increase the dimensionality, going from
2 to 5 in this p = 2 case, but the main point for now is that we
still would be computing dot products. For instance, the new
value of Equation 12.7 would now be
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¢(a;)p(a;)

The Kernel Trick involves finding a kernel k for which

k(u,v) = ¢(u) é(v)

It turns out that such a kernel is

k(u,v) = (¢ +u'v)? (12.9)

for polynomials of degree d, where ¢ is a constant chosen by
the user.

In other words:

The Kernel Trick enables us to stay in the ambient
space yet still achieve the nonlinearity of the lifted
space.

In fact, although it turns out that Equation 12.9 corresponds
to

¢(t) = (t%t%a \/Q t1t27 v 2¢ tlv \ 2¢ t27c)

not only do we avoid computing ¢(¢), we don’t even need to
know its form.

Note again that all this worked only because our quantities of
interest here consist of dot products.

12.14.3 Kernel Ridge Regression: the Code

# kernel ridge regression

# fits 'data' with KRR, ridge parameter 'lamb' and kernel 'kern', and
# then predicts "Y" from 'newX'

krr <- function(data,yName,lamb,kern,newX)
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if (!allNumeric(data)) stop("'data' must be all numeric")

ycol <- which(names(data) == yName)
data <- as.matrix(data)

x <- datal,-ycol,drop=FALSE]
x <- cbind(1,x)

n <- nrow(x)

p <- ncol(x)

newX <- as.matrix(newX)
if (ncol(newX) == 1) newX <- t(newX)
newX <- cbind(1,newX)

partl <- kernAB(newX,t(x),kern)

part2 <- kernAB(x,t(x),kern)

part2 <- solve(part2 + lamb * diag(n)) %*% y
predsKRR <- partl %*J, part2

return(cbind (predsKRR))

# finds the matrix product ab, but with the kernel k evaluated at each
# entry

kernAB <- function(a,b,k)

{
ab <- matrix(nrow=nrow(a) ,ncol=ncol(b))
for (i in 1:nrow(a)) {
arow <- ali,]
for (j in 1:ncol(b)) {
abli,j] <- k(arow,bl[,jl)
}
+
ab
}
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12.15 A Warning

Many statistical quantities now have regularized, i.e. shrunken
versions. It is also standard practice in neural networks. This
may be quite helpful in prediction contexts. However, note the
following:

! No Statistical Inference on Shrinkage Estimators

Shrinkage produces a bias, of unknown size. Thus clas-
sical statistical inference (confidence intervals, hypothesis
tests) is not possible.

12.16 Your Turn

Your Turn: Show that A,,.,, in Section 12.3.2 is of full rank,
-

Your Turn: In Section 12.12, it was pointed out that in some
settings we may prefer to retain all of our predictor variables,
rather than do dimension reduction, thus preferring ridge to
LASSO. But we might pay a price for that preference, in that
the LASSO may actually give us better predictive power. Write
an R function to investigate this, with call form

compareRidgeLASS0O(data,yName)

where data and yName are in the format of the predictive
geM L functions, and the minimum Mean Squared Prediction
Error is returned for both algorithms. Try your function on
some of our datasets, or others.

Your Turn: The LASSO will tend to produce solutions with
lesser sparsity if the dataset is large. Write an R function to
illustrate this, with call form

dependN(data,yName,n=seq(1,nrow(data),100,nReps=1)
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where: where data and yName are in the format of the pre-
dictive geM L functions; the LASSO is applied to n randomly
chosen rows of data; and nReps is the number of replicates
to run at each value of n. The function will compute the num-
ber of nonzero elements in the S chosen by cross-validation in
cv.glmnet. Try your code on a few datasets.

Your Turn: Consider a generalization of ridge regression, in
which we find

argmin, ||S — Ab||* + || Db||

for a diagonal matrix D. The idea is to allow different shrinkage
parameters for different predictor variables. Show that

-1

b=[AA+D? A'S

195



13 Eigenanalysis
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1 Goals of this chapter:

The concept of eigenvalues and eigenvectors is one of the
most important of all applications of linear algebra to data
science. We introduce the basic ideas and properties in
this chapter.

13.1 Example: African Soils Data

To get things started, let’s consider the African Soils dataset.

Let’s take a look around:

library(WackyData)
data(AfricanSoil)

dim(AfricanSoil)

[1] 1157 3600

names (AfricanSoil) [1:25]

[1]
(7]
[13]
[19]
[25]

"PIDN"

"m7488.32"
"m7476.75"
"m7465.18"
"m7453.61"

"m7497.96"
"m7486.39"
"m7474.82"
"m7463.25"

"m7496.04"
"m7484 .46"
"m7472.89"
"m7461.32"

names (AfricanSoil) [3576:3600]

[1]
[7]
[13]
[19]
[25]

"mB05 . 545"
"BSAV"
IIREFl n
|ITMFI n
||Sandll

"m603.617"
n CTI n

n REF2 n
"Depth"

"m601.688"
"ELEV"

n REFS n

||Call
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"m7494.11"
"m7482.54"
"m7470.97"
"m7459.39"

"m599.76"
HEVI n
IIREF7I|
IIPII

"m7492.18"
"m7480.61"
"m7469.04"
"m7457 .47"

n BSAN n
"LSTD"
n RELI n
||pHII

"m7490.25"
"m7478.68"
"m7467.11"
"m7455.54"

n BSAS n
"LSTN"
n TMAP n
n SOC n



Let’s try predicting pH, the acidity. But that leaves 3599 pos-
sible predictors. As mentioned in an earlier chapter, there is an
old rule of thumb that one should have p < \/n, for p predic-
tors and n data points, to avoid overfitting, a rule which in our
setting of n = 1157 is grossly violated. We need to do dimen-
sion reduction. One way to accomplish this is to use Principal
Components Analysis (PCA).

13.2 Overall Idea

The goal is to find a few important linear combinations of our
original predictor variables—important in the sense that they
roughly summarize our data. These new variables are called the
principal components (PCs) of the data. PCA will be covered
in detail in the next chapter, but our preview here will set the
stage for important general concepts that we will develop in
the current chapter.

13.2.1 The first PC

Let X denote a set of variables of interest (not necessarily in
a prediction context). For concreteness, consider the mtcars
dataset that comes with R.

head (mtcars)

mpg cyl disp hp drat wt gsec
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02
Datsun 710 22.8 4 108 93 3.85 2.320 18.61
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02
Valiant 18.1 6 225 105 2.76 3.460 20.22

In searching for good linear combinations Xu, we want to aim
for ones with high variance. We certainly don’t want ones with
low variance; after all, a random variable with 0 variance is a
constant. So we wish to find linear combinations
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which maximize

Var(Xu) = v Cov(X)u

where we have invoked Equation 4.6.

But that goal is ill-defined, since we could take larger and larger
vectors u, thus larger and larger vectors Xu, no maximum vari-
ance. So, let’s constrain it to vectors u of length 1:

wu=1

Let’s use the method of Lagrange multipliers (Section 6.6.2).
In our case, we maximize

uw' Cov(X)u+y(u'u—1)

with respect to v and 7.

Setting derivatives to 0, we have

0 =2Cov(X)u+ 2vyu

In other words,

Cov(X) u=—yu (13.1)

We see a situation in which a matrix (Cov(X)) times a vector
(u) equals a constant (—y) times that same vector. We say
that —v is an eigenvalue of the matrix Cov(X), and that u is
a corresponding eigenvector. Seems innocuous, but it opens a
huge new world!

Note too that from Equation 4.7,

maximal variance = u'Cov(X)u = v'(—yu) = —y  (13.2)

199



We will return to the notion of principal components in the next
chapter, after laying the groundwork in the current chapter.

13.3 Definition

The concept itself is simple:

Consider an n X n matrix M. If there is a nonzero
vector x and a number \ such that

Mx =Xz (13.3)

we say that A is an eigenvalue of M, with eigenvec-
tor x.

13.4 A First Look

Here are a few properties to start with:

e The definition is equivalent to

(M — M)z =0

which in turn implies that M — AI is noninvertible. That
then implies that

det(M — \I) =0 (13.4)

e As mentioned before, determinants can be defined in the
form of polynomials. Here the left-hand side of this equa-
tion is a polynomial in A. So for an n x n matrix M, there
are n roots of the equation and thus n eigenvalues. Note
that some roots may be repeated; if M is the zero matrix,
say, it will have an eigenvalue 0 with multiplicity n.

e In principle, that means we can solve the above deter-
minant equation to find the eigenvalues of the matrix.
There are much better ways to calculate the eigenvalues
than this, though.
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13.5 The Special Case of Symmetric
Matrices

Some eigenvalues may be complex numbers, i.e. of the form a+
bt, but it can be shown that if M is symmetric, its eigenvalues
are guaranteed to be real. This is good news for Data Science,
as many matrices in that field are symmetric, such as covariance
matrices and A’ A in Equation 5.10.

Theorem 13.1. The eigenvalues of a symmetric matriz are
real, not complex numbers, i.e. not of the form a + bi.

We omit the proof.

Theorem 13.2. The eigenvectors corresponding to distinct
etgenvalues of a symmetric matriz M are orthogonal.

Proof. Let u and v be such eigenvectors, corresponding to eigen-
values o and v. Keeping in mind that M’ = M, (ab)" = b’a’,
and that the transpose of a number is just that number, we
calculate v’ Mv in two different ways.

v Mv = u'vv=rvu'v

(W Mv) =v (M) =v"Mu = pv'u = pu'v

So, pu'v = vu'v, forcing u'v = 0 since p and v are distinct.

(] O

A square matrix R is said to be diagonalizable if there exists an
invertible matrix P such that P~ RP is equal to some diagonal
matrix D. We will see that symmetric matrices fall into this
category.

One application of this is the computation of powers of a diag-

onalizable matrix:

RF = (P~'DP) (P7'DP) ... (P~'DP) = P~'D*P
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since PP~1 = 1.

DF is equal to the diagonal matrix with elements d¥, so the
computation of R is easy.

Theorem 13.3. Any symmetric matriz M has the following
properties:

e M is diagonalizable.

e In fact, the matriz P is equal to the matriz whose columns
are the eigenvectors u; of M, chosen to have norm 1. Thus
the same holds for the rows of P’, so that

Py, = \u, 13.5
(A 177

e The associated diagonal matrix has as its diagonal ele-
ments the eigenvalues of M.

e The matriz P has the property that P~' = P’.

e Moreover, the rank of M is equal to the number of nonzero
etgenvalues of M.

Proof. Let D = diag(d,,...,d,,), where the d, are the eigen-
values of M. Set these eigenvectors u; to have length 1, by

dividing by their lengths.

Recall from Theorem 13.2 that the eigenvectors of M, i.e. the
columns of P, are orthogonal, provided the eigenvalues are dis-
tinct, which we will take as an extra assumption here (the the-
orem is valid without it). Again using partitioning, write P
as

P = (uy].fu)
so that
uy
P'P= v | (uy ey,
Uy,
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Then the row i, column j element of P'P is equal to ujuj,
which is either 1 or 0, according to whether ¢ = j or i # j.
Thus P’P = I, as claimed.

By the way, any square matrix @ such that Q'Q = I is said to
be orthogonal.

Now use partitioning again:

MP = M(uy|...|u,,) (13.6)
= (Mu,y]|...|Mu,,) (13.7)
SNAMIT (138)
— PD (13.9)

Multiply on the left by P’, and we are done:

P"MP =P PD=D

Regarding rank, Theorem 7.1 tells us that pre- or postmultiply-
ing by an invertible matrix does not change rank, and clearly
the rank of a diagonal matrix is the number of nonzero ele-
ments.

O O

Theorem 13.4. Any square matriz A and its transpose have
the same eigenvalues.

Proof. 1f X is an eigenvalue of A, then it satisfies Equation 13.4.
But recall that the determinant of a matrix is equal to the
determinant of its transpose. (For example, we can expand
either across the top row or the leftmost row.) Then A also
satisfies

0 = det[(A — AI)'] = det[(A’ — AI)]

Thus A is also an eigenvalue of A’. This argument works in
reverse, or better, note the above shows that A’ has least the
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eigenvalues of A — and no more than that, since both have n
eigenvalues.

O

13.6 Example: Census Dataset

O

Let’s illustrate all this with the census dataset, modified to
include both male and female columns as in Section 12.3.3. We
will form the matrix A’ A in Section 5.3.4, which as mentioned,
is symmetric.

Recall that in that example, A is not of full rank. Thus we
should expect to see a 0 eigenvalue.

library(qeML)

data(svcensus)

svc <- svcensus[,c(1,4:6)]

svcPman <- as.numeric(svc$gender == 'male')
svc$woman <- as.numeric(svc$gender == 'female')

svc$gender <- NULL
a <- as.matrix(svc[,-2]) # look at "X" only, not "Y"
# add the column of 1s

a <-
m <-
eigs
eigs

cbind(1,a)
t(a) %*% a
<- eigen(m)

eigen() decomposition
$values
[1] 7.594762e+07 3.292955e+06 7.466971e+03 1.293594e+03 2.801489e-12

$vectors

[,1]
[1,] -0.015881850
[2,] -0.649660696
[3,] -0.759952974
[4,] -0.012070494
[5,] -0.003811356

[,2]

[,3]

0.004389585 -0.035995373
0.760031134 0.004461047
-0.649864420 0.004991922
0.002130704 -0.724401141

0.002258881
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0.688405767

[,4] [,5]
0.81553633 5.773503e-01
-0.01654550 1.561251e-17
-0.01108122 -4.061024e-17
0.37650952 -5.773503e-01
0.43902681 -5.773503e-01



m %*) eigs$vectors[,1]

[,1]

-1206188.6

age -49340181.0
wkswrkd -57716616.5
man -916725.2
woman -289463.4

eigs$values[1] *% eigs$vectors[,1]

[,1] [,2] [,3] [,4] [,5]
[1,] -1206189 -49340181 -57716617 -916725.2 -289463.4

Yes, that first column is indeed an eigenvector, with the claimed
eigenvalue.

Note that the expected 0 eigenvalue shows up as 2.801489¢-12,
quite small but nonzero, due to roundoff error.

13.7 Application: Detecting Multicollinearity

Consider the basic eigenanalysis equation,

Ax = \x
for a square matrix A, a conformable vector x and a scalar

A. Suppose that, roughly speaking, Az is small relative to A.
Then

Ar ~0
and since Az is a linear combination of the columns of A, we

thus we have found multicollinearity in A, flagged by the pres-
ence of a small eigenvalue..
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One often sees use of the condition number of a matrix, which is
the ratio of the largest eigenvalue to the smallest one. This too
might be used as a suggestion of multicollinearity, though the
main usage is as a signal that matrix operations such finding
inverses may have significant problems with roundoff error.

13.8 Example: Currency Data

This dataset tracks five pre-euro European currencies.
library(qeML)

data(currency)
head(currency)

Can..dollar Ger..mark Fr..franc UK.pound J..yen

1 19 580 4.763 29 602
2 18 609 4.818 44 609
3 20 618 4.806 66 613
4 46 635 4.825 79 607
5 42 631 4.796 7 611
6 45 635 4.818 74 610
dim(currency)

[1] 762 &

crc <- currency

crc <- as.matrix(crc)
crcapa <- t(crc) %*% crc
eigs <- eigen(crcapa)
eigs

eigen() decomposition
$values
[1] 4.180990e+08 5.356321e+07 8.199388e+06 4.686379e+06 4.764149e+02

$vectors
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(,1]

[1,] -0.464701846
[2,] -0.548123722
[3,] -0.008118519
[4,] -0.541352395
[5,] -0.436445017

[,2]
-0.589664107
0.364936898
-0.002208129
-0.364398075
0.621551662

# that last eigenvalue is much

# illustrate Ax

[,3]
0.573442227
-0.424252867
0.005818183
-0.476833987
0.513584476

smaller than

lambda x approx O
crcapa %*% eigs$vectors[,5]

[,1]
Can..dollar -3.9238561
Ger. .mark -0.4017386
Fr..franc 476.3899505
UK.pound -1.3056059
J..yen -2.5596868

eigs$values[5] *

eigs$vectors([,5]

[,4]
0.3277874495
0.6216029591

-0.0005349635
-0.5888747450
-0.3992385223

the others

[,5]
-0.0082362154
-0.0008432535

0.9999475368
-0.0027404807
-0.0053728096

[1] -3.9238561 -0.4017386 476.3899505 -1.3056060 -2.5596868
# is Ax small?
head(crcapa)

Can..dollar Ger..mark Fr..franc UK.pound J..yen
Can..dollar 112111475 93929522 1673631.29 113542760 66967756
Ger..mark 93929522 136033582 1795560.29 116882053 109220119
Fr..franc 1673631 1795560  28573.49 1859363 1433430
UK. pound 113542760 116882053 1859363.20 133130962 85746625
J..yen 66967756 109220119 1433430.43 85746625 103243878

The value for the franc is much smaller than the others. So yes,
this dataset has some multicollinearity.
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13.9 Computation: the Power Method

One way to compute eigenvalues and eigenvectors is the power
method, a simple iteration. We begin with an initial guess, z,
for an eigenvector. Substituting in Equation 13.3, we have the
next guess:

We keep iterating, generating x, from z,, generating x; from
zo and so on. until convergence, meaning that z; ; and x; do
not differ much from each other.

However, the z; may grow, so we normalize to length 1:

Ly

T, ——
C ]

Now, after obtaining an eigenvector in this manner, how do we
get the associated eigenvalue? We can do this by calculating
the Rayleigh Quotient: Denote the eigenvalue associated with
x by A. Then

Az)'x

x'x

vl

To see this, simply substitute Az in the numerator by Az.

It can be shown that the above iterative process yields the
maximal eigenvalue of A. But what about the rest of the eigen-
values? This is achieved via deflation techniques, which we will
not present here.

13.10 Application: Computation of
Long-Run Distribution in Markov
Chains

We showed in Section 3.3 how matrix inverse can be used to
compute the long-run distribution v in a Markov chain. How-
ever, this is inefficient for very large transition matrices. For
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instance, in Google PageRank, there is a Markov state for every
page on the Web!

Instead, we exploit the fact that Equation 3.3 says that the
transition matrix has an eigenvector v with eigenvalue 1. Due
to the typical huge size of the matrix, the power method or a
variant is often used.

13.11 Your Turn

Your Turn: Take a symmetric matrix A of your choice, use
R to find its eigenvalues and eigenvectors. Verify that the lat-
ter are orthogonal, and that the matrix P formed as in Theo-
rem 13.3 does indeed have its transpose as its inverse. (If you
choose a noninvertible A, try another.)

Your Turn: Show that any Markov transition matrix has an
eigenvalue 1, with eigenvector consisting of all 1s.

Your Turn: Show that the diagonalizing matrix P for a
symmetric matrix must have determinant +1.

Your Turn: Show that if x is an eigenvector of M with
eigenvalue A # 0, then for any nonzero number ¢, cx will also
be an eigenvector with eigenvalue A.

Your Turn: Show that if a matrix M has a 0 eigenvalue, M
must be singular. Also prove the converse. (Hint: Consider the
column rank.)

Your Turn: Consider a projection matrix Py,. Show that
the only possible eigenvalues are 0 and 1. Hint: Recall that
projection matrices are idempotent.

Your Turn: Say A is an invertible matrix with eigenvalue A
and eigenvector v. Show that v is also an eigenvector of A~
with eigenvalue 1/\.

Your Turn: Show that if A is nonnegative-definite, its eigen-
values must be nonnegative.

Your Turn: Theorem 13.3 says that for any symmetric ma-
trix M is diagonalizable: There is an orthogonal matrix P such
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that P’ M P is equal to a diagonal matrix D, the latter consist-
ing of the eigenvalues of M. Use this to show that

2 Mz < g |2

where A is the largest eigenvalue. Hint: First show that

max

x'Mz = (Px) D(Px)
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14 Principal Components
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1 Goals of this chapter:

It turns out that eigenanalysis can be quite useful for di-
mension reduction, by determining the principal compo-
nents of our data. This is the focus of the current chapter.

So in the last chapter we had a very brief introduction to Prin-
cipal Components Analysis (PCA), finding the first component
entails finding an eigenvector and eigenvalue. It turns out that
this is true for the second, third and all the components. In
other words, PCA is basically an eigenvectors and eigenvalues
application.

14.1 The Second, Third Etc. PCs

Say we have a dataset () in matrix form, again using the mtcars
data for concreteness.

head(mtcars)

mpg cyl disp hp drat wt gsec
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02
Datsun 710 22.8 4 108 93 3.85 2.320 18.61
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02
Valiant 18.1 6 225 105 2.76 3.460 20.22

There are as many principal components as there are columns
in (). We derived the first PC in Section 13.2.1. So, how are the
second, third and so on components defined and computed?

The key issue is that we want our PCs to be orthogonal vectors,
because as we saw in Section 10.6, orthogonal random vectors
are statistically uncorrelated, and independent in the multivari-
ate normal case. So if we summarize our data with say, the first
few PCs, the fact that they are uncorrelated makes for a neater
summary, in a sense having no duplication.
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So with v and v denoting the first and second PCs, we want v
to maximize v'Cov(Q)v, so we set the derivative of

v Cov(Q)v + w(v'v—1) + 7(u'v—0)
with respect to v to 0. (Note the two Lagrange variables, w and

T.)

0=2C0ov(Q)v+ 2wv+ Tu (14.1)

Pre-multiply by u':

0 =2u'Cov(Q)v + 2wu'v + Tu'u

=2u'Cov(Q)v+ T (142)

Also, since Cov(Q)) is symmetric and w is an eigenvector of
Cov(Q), say with eigenvalue 7,

u'Cov(Q)v = [Cov(Q)u])'v=~yu'v=0 (14.3)

So Equation 14.2 and Equation 14.4 now tell us that = = 0,
and thus Equation 14.1 reduces to

Cov(Q)v = —wv (14.4)

showing that the second PC is again an eigenvector of Cov(Q).
Equation 13.2 then says that —w is the corresponding vari-
ance.

The story is the same for the remaining PCs.
Theorem 14.1. The principal components have the following
properties:

o They are orthogonal to each other.
o They are eigenvectors of Cov(Q).
o The eigenvalue corresponding to a PC z is Var(z'Q).

o The eigenvalues form a nondecreasing sequence.

213



e Say Q has m columns. Normalize the PCs u; (i.e. divide
a PC by its length, so that we have a vector of length 1)
and form the m x m (partitioned) matriz

P = (uq|ug|...|u,,)

Then

P'Cov(Q)P =D (14.5)

where D is a diagonal matriz whose entries are Var(u;Q),
and P'P = 1.

o PC1, i.e. uy, is a linear combination of the original vari-
ables, PC2, i.e. uq, is a linear combination of the original
variables, and so on. The PCi are our new predictor
variables, though we will probably use only the first few.

e Let G denote a matriz in the same form at the matriz A
in the linear regression model (without a 1s column). In
other words, each row contains the data on one sampling
unit, e.g. one person. To convert from the original pre-
dictor variables to PCs, compute GP. If we wish to use
just the first few PCs, then compute

G(Py]...|Py)

where k denotes our desired number of PCs. (A topic to
be explored in Section 14.5.)

e By construction, the covariance matriz of GP is D, so
the PCs are uncorrelated.

14.2 Review of Goals Achieved

e We hope to achieve dimension reduction, meaning a re-
duction in our number of predictor variables, for two rea-
sons:
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— Parsimony: All else being equal, smaller models are
easier to deal with and interpret.

— Avoidance of overfitting: As the model size p in-
creases relative to fixed data size n, there is a point
past which the predictive power of a model actually
begins to decline. (But see Chapter 16.)

e PCA achieves those goals:

— We produce new predictors, the PCs, from our orig-
inal ones, ranked according to variance. (Recall: A
variable with low variance is nearly constant, thus
rather useless.)

— We can reduce our number of predictors by using
only some of the PCs.

— The new predictors don’t duplicate each other, in
that they are uncorrelated.

14.3 The PCs as Our New Predictor
Variables

So, let’s see how all this works. We will start with a simple
dataset, our census data.

data(svcensus)
head (svcensus)

age educ occ wageinc wkswrkd gender
1 50.30082 zzz0Other 102 75000 52 female
2 41.10139 zzz0ther 101 12300 20 male
3 24.67374 zzz0ther 102 15400 52 female
4 50.19951 zzz0ther 100 0 52 male
5 51.18112 zzz0ther 100 160 1 female
6 57.70413 zzz0ther 100 0 0 male
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svc <- factorsToDummies(svcensus)
"Y" variable

svc <- svcC [,—11]

z <- prcomp(svc)

names (z)

# remove our

[1] "sdev" "rotation" "center" "scale" "y

z$sdev

[1] 1.460125e+01 1.122240e+01 6.221131e-01 5.967231e-01 5.165748e-01

[6] 4.730515e-01 3.879820e-01 2.264263e-01 2.211419e-01 1.668888e-01

[11] 2.255119e-15 1.424588e-15 1.270416e-15
The entity z8$rotation is our matrix P. Here sdev is the square It's called a rotation because
roots of the variances, i.e. of the square roots of the eigenvalues.
It appears that there are two main PCs, the rest minor. Here

geometrically the change of variables
really does cause a rotation of the

coordinate system.

we can see which of the original variables each of these two PCs

focuses on.

> z$rotation

PC1 PC2 PC3 PC4
age 0.0071442921 0.9999532343 0.000726208 -2.397875e-05
educ.14 -0.0010745227 0.0010525943 -0.321503608 4.907644e-01
educ. 16 -0.0004109197 0.0010580494 -0.036350998 2.631539e-02
educ.zzz0ther 0.0014854423 -0.0021106436 0.357854606 -5.170798e-01
occ.100 0.0009216241 0.0009575240 0.242783424 -8.554274e-02
occ.101 0.0016559718 -0.0011507204 0.101640265 -1.731946e-01
occ.102 -0.0016720082 -0.0037463757 -0.245946083 3.378269e-01
occ.106 -0.0001386860 -0.0001002262 0.017018077 3.846487e-03
occ.140 -0.0001607628 -0.0003608480 -0.010823679 -1.106524e-02
occ.141 -0.0006061389 0.0044006464 -0.104672004 -7.187076e-02
wkswrkd -0.9999670218 0.0071416042 0.003457670 -9.540378e-04
gender.female 0.0015140583 -0.0001762090 0.559515249 4.088654e-01
gender.male -0.0015140583 0.0001762090 -0.559515249 -4.088654e-01

In that first PC, the largest component by far is wkswrkd,
trailed substantially by the next-largest, age. Those two vari-
ables more or less trade places in the second PC.
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In other words, if our project is to predict wage income, we
might use PCs 1 and 2 as our predictors, as opposed to using
all 13 of the original variables.

The numbers suggest that none of the other predictors is very
powerful, though this should not be viewed as meaning that
the others are collectively useless.

Well, how do we actually use PC1 and PC2? Say we have
several new people for which we need to predict wage income.
Place their predictor values in a matrix, say GG, one person per
row (i.e. the same format at the matrix A in Equation 5.10,
though without a 1s column). Then as stated in the theorem,
our matrix of new predictor data is simply the matrix product
shown above

G %*% P[,1:nPC]

So to make the full switch, convert the entire dataset:

P <- z$rotation
svcNew <- svc %*% P[,1:2]
head(svcNew) # our new data!

PC1 PC2
[1,] -51.6375939 50.66379
[2,] -19.7040727 41.23922
[3,] -51.8206812 25.03792
[4,] -51.6387521 50.56755
[65,] -0.6303930 51.18454
(6,1 0.4131482 57.70046

1mOut <- Im(svcensus$wageinc ~ svcNew)
ImOut

Call:
Im(formula = svcensus$wageinc ~ svcNew)

Coefficients:
(Intercept) svcNewPC1 svcNewPC2
-22101.3 -1385.4 508.4
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14.4 Back to the African Soils Example

So, we remove the “Y’’ variable, pH, number 3598 as in Sec-
tion 13.1, and proceed. We will also remove the nonnumeric
columns, PIDN and Depth.

library(WackyData)
data(AfricanSoil)

x <- AfricanSoill[,-c(1,3595,3598)]
z <- prcomp(x)

head(z$sdev,25)

[1] 8.7178222 3.0908233 2.6418988 2.0517201 1.6983891 1.4748272 1.3980475
[8] 1.1497188 0.9682689 0.8033391 0.7974972 0.7405673 0.6734597 0.6310006
[15] 0.6054025 0.5912755 0.5096743 0.4511786 0.3871415 0.3533344 0.3345691

[22] 0.3089582 0.2843214 0.2532976 0.2465674

Ah, the eigenvalues fall off rapidly after the first few. So we
might use, say, the first dozen PCs.

That’s quite a feat! We started with over 3,000 predictors, and

cut it down to 12.

newx <- as.matrix(x) %x*% z$rotationl[,1:12]

head (newx)
PC1 PC2 PC3 PC4 PC5
[1,] -46.55433 1.75412328 -27.61468 -0.7715529 -14.72332
[2,] -48.97753 -0.03899486 -28.60920 -0.3140904 -14.19085
[3,] -41.34060 2.79805480 -25.44885 -0.3670190 -15.62468
[4,] -39.34208 1.92317324 -25.78511 -0.2379570 -15.08456
[65,] -41.88505 2.64120041 -27.53284 -1.5812961 -15.23804
[6,] -37.09569 1.24453500 -27.13932 -1.1065947 -14.96667
PC8 PC9 PC10 PC11 PC12
[1,] 2.860247 -0.2246997473 1.816366 -2.303456 -0.5364818
[2,] 3.001019 -0.0038125862 1.305971 -2.530724 -0.6107867
[3,] 3.037891 0.0686585033 2.673836 —-2.017832 -0.6884367
[4,] 2.839273 0.0861274613 2.513475 -2.241782 -0.7523705
[65,]1 3.492016 -0.0008967448 1.123003 -2.025351 -0.4733205
[6,]1 3.027975 -0.3744700168 1.398285 -2.234916 -0.3414471
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1mOut <- 1m(AfricanSoil[,3598] ~ newx)
1ImQOut

Call:
Im(formula = AfricanSoil[, 3598] ~ newx)

Coefficients:
(Intercept) newxPC1 newxPC2 newxPC3
1.322005 -0.007453 -0.037351 0.090569
newxPC6 newxPC7 newxPC8 newxPC9
-0.255148 0.076345 -0.060700 -0.062136
newxPC12
-0.130541

14.5 How Many Principal Components
Should We Use?

There are no formal rules for how many PCs to use. Various
“rules of thumb” do exist, but of uncertain real value.

If we are doing prediction, there is a very natural way to choose
our number of PCs — do cross-validation (Section 12.6), and use
whichever number gives the most accurate prediction.

14.5.1 Example: New York City taxi trips

This dataset was introduced in Section 12.12, a version of which
is included in the qeML package. The object is to predict trip
time, given pickup and dropoff locations, trip distance and day
of the week.

In the raw form of the data, there are just 5 columns, thus 4
predictors. But the pickup and dropoff locations are R factors,
coding numerous locations. As before, these must be decoded
to dummy variables (values 1 or 0, coding whether or not, say,
a given trip began at pickup location 121). If for instance one
calls the R linear regression function Im, that function will do
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the conversion internally, but in our case we will perform the
conversion ourselves, using regtools::factorsToDummies.
(The regtools package is included by geML.)

library(qeML)
data(nyctaxi)
dim(nyctaxi)

[1] 10000 5

nyc <- factorsToDummies(nyctaxi,dfOut=T)
dim(nyc)

[1] 10000 357

Wow! That’s quite a lot of predictors, and well in excess of the
common rule of thumb that one should have no more than \/n
predictors, 100 in this case.

So, we might try dimension reduction via PCA, then use the
PCs as predictors. The function gqeML::qePCA combines
these two operations. Let’s see how it works.

args (qePCA)

function (data, yName, geName, opts = NULL, pcaProp, holdout = floor(min(1000,
0.1 * nrow(data))))
NULL

Here geName indicates which function is desired for predic-
tion, e.g. qeLin for a linear model. (This function wraps lm.)
But a key argument here is pcaProp. Recall that:

e The PCs come in order of decreasing variance.

e We are mainly interested in the first few PCs. The
later ones have small variance, which makes them
approximately constant and thus of no use to us.
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The name ‘pcaProp’ stands for “proportion of total variance.”
If we set this to, say, 0.25, we are saying “Give us whatever
number of the first few PCs that have a total variance of at
least 25% of the total.” Let’s give that a try:

qePCA(nyc, 'tripTime', 'gelin',pcaProp=0.25)$testAcc
[1] 311.9159

We asked to predict the column ‘tripTime’ in the dataset nyc
using the qeLin function, based on as many of the PCs that
will give us 25% of the total variance. Most geML prediction
functions split the data into a training set and a holdout set.
The model is fit to the training set, and then applied to predic-
tion of the holdout set. The output value is the mean absolute
prediction error (MAPE).

However, since the holdout set is randomly generated, the
MAPE value is random, so we should do multiple runs. Some
experimentation showed that MAPE here is highly variable,
so we decided to perform 500 runs, e.g.

mean (sapply(1:500,function(i) qePCA(nyc, 'tripTime', 'qelLin',pcaProp=0.1)3$testAcc))
[1] 359.663

Table 14.1: Mean Absolute Predictive Error

pcaProb MAPE

0.1 359.6630
0.2 359.3068
0.3 403.9878
0.4 397.3783
0.5 430.8958
0.6 423.7299
0.7 517.7917
0.8 969.1304
0.9 2275.091

Among other things, this shows the dangers of overfitting, in
this case using too many PCs in our linear regression model. It
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seems best here to use only the first 10 or 20% of the PCs.

14.6 A “Square Root” Matrix, and MV
Normal Simulation

Theorem 14.2. Any covariance matriz A has a “square root”
matriz Q, i.e.

Q> =4

Proof. From Theorem 14.1, we have P’AP = D for some ma-
trix P and diagonal matrix D, with the entries of the latter
being the variances of the PCs 7. That latter point implies
that

D?=D

where D, = diag(oy,04,...,0,). Then setting Q = PD,P’, we
have

Q* = (PD,P')(PD,P’) = PD?*P' = PDP’ = A

14.6.1 Implications for simulation of multivariate
normal X

Say we wish to write code to simulate a random vector @) hav-
ing an m-variate normal distribution with mean vector p and
covariance matrix . Here is how it works:

o We start with generating Z, a vector of m independent
N(0,1) variables. That means Z is m-variate normally
distributed, with mean vector consisting of m 0Os, and
covariance matrix I, the m x m identity matrix.

e We compute W = X%°Z. By Equation 4.10, W will again
be multivariate normally distributed, with mean vector
consisting of m 0s, and covariance matrix equal to

20.5120.5 =3
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Our solution is then

Q=p+3%Z

14.7 Your Turn

Your Turn: Use PCA to do dimension reduction on the s50
dataset.

Your Turn: The reader has likely seen the concept of a
cumulative distribution function (CDF). For a scalar random
variable X, thisis F,(t) = P(X <t). If X is an m-dimensional
random vector, the definition is

Fy(ty,nt,)=P(X, <t,...X, <t )
Write an R function with call form

multiCDF (mu,Sigma,t,n)

that uses simulation to evaluate the multivariate CDF, where
t = (ty,...,t,,) and n is the number of replications to simu-
late.

Your Turn: Say X has mean vector u and covariance matrix
3. Show how we can use Theorem 14.2 to find a square, con-
stant matrix A such that Cov(AX) = I. If in addition X has a
multivariate normal distribution, then AX will then consist of
independent random variables with variance 1. Explain why.

Your Turn: Modify the code for qePCA for the case of
linear regression by adding a component xCoeffs to its return
value. This will give the regression coeflicients in terms of the
original X predictors.

Your Turn: Say the symmetric matrix A has block diagonal
form
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A, 0 0.
A: 0 A2 0...

where A, (i=1,...,7)
e is symmetric
o is of size k; x k;
* has eigenvalues 7y, ...,y

« has eigenvectors uy j,...,uy ;, where j =1,.... k;
9. 9,

State the form of the eigenvalues and eigenvectors of A.

Your Turn: In Section 13.7, there was a statement “c is
nonzero with high probability.” Why was that important?

Your Turn: Write an R function with call form

bestPCAPred(data,yName)

It will apply PCA to the X portion of data, then apply lm
successivly to the first PC, then the first two, then the first
three and so on assessing with cross-validation in each case. It
will then return the number of PCs (and the PCs themselves)
that predicts best. Try your function on various datasets.

Your Turn: Say the symmetric n X n matrix A has rank r.
Show that n — r of its eigenvalues are Os.
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15 Singular Value
Decomposition
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1 Goals of this chapter:

We’ve seen the notion of eigenanalysis for square matrices.
Well, it turns out this can be extended usefully for non-
square matrices, via Singular Value Decomposition (SVD),
the topic of this chapter, with important applications.

15.1 Basic Idea

Here is what we are aiming for.

1 Our target relation:

Given an m x n matrix A, we wish to find orthogonal ma-
trices U and V, and a matrix ¥ = diag(oy, ..., 0,,) whose
nonzero elements are positive, such that

n

A=USV’ (15.1)

By convention the ordering of columns is set so that the
0, occur in nonincreasing order.

Note that, by matrix partitioning, Equation 15.1 also says
that

A= o (15.2)
=1

where u; and v, are the i*" rows of U and V.

Note the dimensions:

e Uismxn
e Visnxn

e MiSNXn

Let r denote the rank of A. It will turn out that o, = 0 for
t=7r4+1,..,n.
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15.2 Example Applications

Here are some brief overviews of applications.

15.2.1 Recommender Systems

Recall Section 2.10, which began with movie ratings data. We
would like to predict the rating that some particular user would
give to some particular movie. It will turn out that we can
neatly set up SVD in such a way that U contains movie data
and V contains user data.

15.2.2 Text Classification

An oft-used example is that in which we have a collection
of newspaper articles that we wish to categorize, say politics,
sports, health, finance and so on. Say one of the articles in-
cludes the word bonds; is it referring to financial instruments,
family relations, former baseball star Barry Bonds etc.?

In spite of today’s dazzling array of Large Language Models,
a simple problem like this may be better solved using straight-
forward methods, such as SVD. We set up a document-term
matriz, with element (7, j) being 1 or 0, according to whether
document ¢ contains word j. Applying SVD to this matrix, we
have a setting with similar appeal to the recommender systems
example above, in which U contains our data on documents
and V does the same for words.

15.2.3 Dimension Reduction

Recall that in the matrix 3, the eigenvalues are arranged in
decreasing order, possibly followed by Os. This suggests that
we can achieve dimension reduction by replacing even some
of the smaller eigenvalues by 0s as well, with corresponding
adjustments to the columns of U and V. We will discuss this
below in Section 15.8.

227



15.3 Solution to Our SVD Goal

There are various derivations, e.g. along the lines of Sec-
tion 13.2.1, but let’s go directly to the answer:

1.

. Compute the eigenvalues oy,...,0

Say we have a p x n matrix A (not necessarily from the
regression context), so that A’ A will be of size n x n. Let
r denote the rank of A’ A, which will be the same as the
rank of A from Theorem 7.5.

, and eigenvectors
vy, ...,0, of A”A. Normalize the v; by dividing by their
lengths. (The same eigenvalues will still hold.) Order the
o, from largest to smallest, and use the same ordering
for the v,.

Since A’A is symmetric and nonnegativre-definite, its
eigenvalues will be nonnegative and its eigenvectors
vq,...,0, will be orthogonal as long as oy,...,0, are
distinct, as is typically the case for numeric data. Since
these eigenvectors diagonalize A’A with the o, on the

diagonal (Chapter 14), we will have 0, = ... = 0,, = 0.

. Set ¥ to diag(oy,...,0,), the nonincreasing list of those

eigenvalues. Set the first r columns of V' to the corre-
sponding eigenvectors. Use the Gram-Schmidt Method
(see Section 10.5) to add n — r more vectors. V will then
have orthonormal columns, and thus be an orthogonal
matrix.

. Set

i=1,..7 (15.3)

The wu,; will be orthogonal: For i # j,

1

/ _ 7 A7 7 _

uju; = ——v;A"Av; = vjv; =0
0,0,

where we have used the facts that v; is an eigenvector of
A’ A and the v, are orthogonal.
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Using Gram-Schmidt, we can compute (if » < n neces-
sitates it) vectors w,q,...u,, so that u,...,u, is an or-
thonormal basis for ™. Set U, described in partitioning
terms: to

U = (]|,

15.4 Interpretation of U and V'

Again, say A is of size m x n. Recall that V consists of the
eigenvectors of the n x n matrix A’A. U is constructed from
vectors as in Equation 15.3, but actually those are eigenvectors
of AA”:

(AA Y, = (AA/)(%Avi) (15.4)
- ;AKA’;) v (15.5)
= i Ao, (15.6)
- ;u (15.7)

So, u; is an eigenvector of AA’, with eigenvalue o,.

15.5 SVD as a basis for matrix generalized
inverse

Recall the example in Section 7.1. We could not have dummy-
variable columns for both male and female, as their sum would
be a column of all 1s, in addition to a column of 1s the X
data matrix already had. The three columns would then have
a nonzero linear combination that evaluates to the 0 vector.
Then in Equation 5.10, A (i.e. X) would not be of full rank, nor
would A’A (Theorem 7.5), so that (A”A)~! would not exist.

And yet the equation from which that comes,
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A'Ab=A'S (15.8)

is still valid. We could, as in that example, remove one of the
gender columns, thus solving the problem of less than full rank,
but the use of generalized inverses solves the problem directly.
If A has many binary variables, the use of generalized inverses
may be more convenient.

One of the most famous forms of generalized inverse, is the
Moore-Penrose pseudoinverse, based on SVD. Given the SVD
of a matrix M,

its Moore-Penrose inverse, denoted by M™, is

where X}, is the diagonal matrix obtained from ¥,; by replac-
ing each nonzero element by its reciprocal.

The Moore-Penrose solution of Mz = w for vectors z and w,
is

z=M"w (15.9)

The R function M ASS::ginv performs the necessary computa-
tion for us; we need not call svd().

15.6 SVD in linear models

Now apply this to our linear model problem (Equation 15.8).
We claim that

b= AtS =VEU'S (15.10)
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solves the equation. (Actually if A is of less than full rank,
there are infinitely many solutions, a point discussed in detail
in Chapter 16.)

Let’s check. Before beginning, recall that the orthogonal nature
of U and V implies that U'U = I and V'V = I. Now substitute
Equation 15.10 in the left side of Equation 15.8:

A'Ab = (USVY (USV'Y(UZV)*TS (15.11)
= (VU UV (VETU'S) (15.12)
=VX2V/(VETU’S) (15.13)
=VXU’'S (15.14)
=A'S (15.15)

15.7 Example: Census Data

library(qeML)
data(svcensus)
head (svcensus)

age educ occ wageinc wkswrkd gender
1 50.30082 zzz0ther 102 75000 52 female
2 41.10139 zzz0ther 101 12300 20 male
3 24.67374 zzz0ther 102 15400 52 female
4 50.19951 zzz0ther 100 0 52 male
5 51.18112 zzz0ther 100 160 1 female
6 57.70413 zzz0ther 100 0 0 male

svc <- svcensus[,-c(2,3)]

# have only 1 categorical/dichotomous variable, for simple example
svc <- factorsToDummies (svc)

head (svc)
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age wageinc wkswrkd gender.female gender.male

[1,] 50.30082 75000 52 1 0
[2,] 41.10139 12300 20 0 1
[3,]1 24.67374 15400 52 1 0
[4,] 50.19951 0 52 0 1
[5,] 51.18112 160 1 1 0
[6,] 57.70413 0 0 1

x <- cbind(1,svc[,-2])

head (x)

age wkswrkd gender.female gender.male
[1,] 1 50.30082 52 1 0
[2,] 1 41.10139 20 0 1
[3,] 1 24.67374 52 1 0
[4,] 1 50.19951 52 0 1
[5,] 1 51.18112 1 1 0
[6,]1 1 57.70413 0 1
xplus <- MASS::ginv(x)
bhat <- xplus %*} svcl[,2]
bhat

[,1]
[1,] -16022.454
[2,] 496.747
[3,] 1372.756
[4,] -13361.634
[5,]1 -2660.821
1lm(wageinc ~ .,svcensus[,-c(2,3)])$coef
(Intercept) age wkswrkd gendermale
-29384.088 496.747 1372.756  10700.813

Since the two analyses use different sets of predictors, it is not
surprising that the intercept terms differ, but otherwise the two
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approaches are consistent with each other. This includes the
gender variables, since

—13361.634 — (—2660.821) = —10700.81

15.8 Dimension Reduction: SVD as the Best
Low-Rank Approximation

This is a very common application of SVD.

15.8.1 “Thin” SVD

The SVD of a rank r, ¢ X n matrix A can be partitioned as

A=wiloy (% 0 ) wivey

where U, is of size ¢ x r, V] is of size n x r, and D; is r x r.
Simplifying, we have

A= (U,D,)0) ( v

) =U,D,V{ (15.16)

So, we’ve reduced the size of memory needed to store the SVD,
by using U;, D; and V] instead of the larger U, D and V. This
is called the thin SVD.

But there’s more:

15.8.2 Low-rank approximation

The eigenvalues of a matrix, arranged from largest to smallest,
tend to degrade in a gradual manner, as seen for example in
Section 14.4. So, in the context of SVD, with the last n —r
eigenvalues being 0Os, it will typically be the case that the last
few eigenvalues among o7, ..., 0, are near 0.
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In other words, we probably can get a good approximation
to the SVD by treating those near-0 eigenvalues as 0s, and
removing the corresponding columns of U; and V;. Why do
this?

o Achieve a further reduction in storage requirements. for
instance in settings in which we have many, many images
or even better, many, many videos.

e Reduce noise, again for example with images. Small
blotches are smoothed out.

e In the spirit of Chapter 12, the low-rank approximation
may be viewed as a “shrunken” SVD, a remedy to possible
overfitting.

15.8.3 Example: Image Compression

Let’s try that idea with the picture on the cover of this book.
We will

 convert from color to grayscale for simplicity (a color im-
age consists of three matrices, one for each primary color)

o calculate the SVD of the resulting matrix

e retain only the first k£ eigenvectors and eigenvalues; the
smaller k is, the greater the storage savings but the poorer
the approximation

Here is the code:

library(imager)

img <- load.image('prj.png')

# grayscale() doesn't work directly on this
# image, due to alpha (transparency) channel
imgNoAlpha <- rm.alpha(img)

imgGrayNoAlpha <- grayscale(imgNoAlpha)
dim(imgGrayNoAlpha)

imgSVD <- svd(imgGrayNoAlpha)

u <- imgSVD$u

v <- imgSVD$v

origImgMat <- u %*), diag(imgSVD$d) %x*7, t(v)
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recipe produces the “best” low-rank
approximation, in terms of Frobenius
norm. The latter treats an m x n
matrix as a vector of length mn and

applies the ordinary [, norm.



plot(as.cimg(origImgMat))

retainedRank <- 50 # keep only the first 50 columns in U and V

newImgMat <- ul[,l:retainedRank] Yx*’% diag((imgSVD$d) [1:retainedRank]) Y*7
t(v[,1l:retainedRank])

plot(as.cimg(newImgMat))
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The rank-50 version is almost as sharp as the full image — and
achieves a huge reduction in storage space.

15.8.4 Example: MNIST optical character recognition

The famous MNIST image dataset is the “Hello World” of im-
age recognition, everyone’s introductory example. It consists of
70,000 images, each of size 28 x 28 = 784 pixels. images of hand-
written digits 0 through 9. The goal of course is to correctly
guess the digit (“Y”), based on the 784 pixels (“X”).

The situation here is a bit different from other classification
applications we’ve covered so far, in the here “Y” is a vector
rather than a scalar. Element ¢ of the vector is either 1 or 0,
depending on whether the handwritten digit is ¢ or not.

There are various ways of handling this, but the one we will
discuss here is to perform 10 separate classification fits, one for
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each digit, using the logistic model. In other words, we will call
glm 10 times, yielding 10 fits. Since fit ¢ gives the probability
of digit 4, given the values of the 784 pixels, we then take our
guess for the digit to be the one with highest probability.

In our usual notation, we have p = 784, with n = 70000. Again,
the p < y/n rule of thumb is violated, so dimension reduction
should be of value. We will find the low-rank approximation for
the data. This also has the advantage of speeding up algorithms
that are much slower than logit, such as neural networks.

We will only illustrate one digit here, ‘5’, and only the first
steps.

library(WackyData)
data(mnistPred5)
dim(mnistPredb)

[1] 70000 785

# final column is y, 1 or O for '5' or not
u <- svd(mnistPred5[,-785])
head (u$d, 100)

[1] 417574.10 141551.44 131066.28 121191.36 112716.

[8] 83716.56 83066.77 75104.59 71476.99 70398.
[15] 61950.04 59850.43 57243.19 55743.22 53440.
[22] 49245.10 48008.36 46777.03 46077.41 44899.
[29] 42160.13 40705.79 39704.84 39368.55 37987.
[36] 36147.17 34811.89 34197.64 33911.45 33513.
[43] 31757.46 30842.74 30375.39 30040.28 29459.
[60] 27749.48 27681.52 27297.31 26680.43 26397.
[57] 25402.46 24833.91 24658.92 24236.31 24012.
[64] 23033.74 22621.82 22294.68 22071.39 21657.
[71] 21188.01 20887.84 20602.49 20404.25 19894.
[78] 19254.52 18792.30 18478.41 18412.93 18349.
[85] 17834.89 17796.95 17639.25 17339.31 17177.
[92] 16568.33 16454.85 16242.15 16133.17 16042.

[99] 15545.61 15493.61
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In order to maximize classification accuracy, we would probably
need a larger value of k, large than the 100 value we tried here.
As usual, we could use cross-validation to determine a “big
enough” k.

15.9 Matrix Factorization in Recommender
Systems

Now, in the recommender systems context, take A to be the
matrix whose row %, column j element is the rating user ¢ gives
to movie j. (We take A to be fully known for now.)

e The columns of U are basically eigenvectors of the matrix
AA’, which in turn has one row and one column for each
moviegoer.

e The columns of V' are basically eigenvectors of the matrix
A’ A, which in turn has one row and one column for each
movie.

e Thus the SVD A = UXV’ expresses the ratings matrix A
in terms of a moviegoers data factor U and a movies data
factor V. To write it as a genuine product of two factors,
write

A=USV' = (US05)(205V) = WH' (15.17)

where X9 is the diagonal matrix with elements ,/7;.

In the last section, our goal was to “thin out” a matrix In this
section, we hope to fill in a sparse matrix.

Let A denote the ratings matrix, so that the element in row i,
column j is the rating user 7 gives to item j. Note that most
elements of A are unknown, and we hope to predict them with
some reasonable amount of accuracy.

Again, since we do not know all of A, we do not know any
of the matrices that make up its generalized inverse. We will
return to this problem shortly, but for now pretend A and the
matrices are known.
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Write the SVD, as in Equation 15.17:

A=UxV' = (UX*?)(X°°V') = WH'

Say A is u X m, for u users and m movies. Again, the the point
is that we have factored A into the product of a matrix W
containing information about the users’ ratings and a matrix
H’ that does the same for items.

Note that the row i, column j element of A is equal to w;h;,
where w; is row 7 of W and v; is column j of H'.

This suggests that the following iterative process may work:

1. Replace the unknown elements of A by some temporary
values. This could be all Os, say, or maybe replacing all
unknown values in column j by the mean of the intact
values in that column.

2. Find W and H’ for that temporary version of A, our
guess.

3. Use the formula w;h; to calculate (new guesses for) the
unknown elements, updating accordingly to a new guess
for A.

4. Tf convergence not yet reached, go to Step 2.

Optionally in Step 2, we can first convert the SVD to a low-rank
approximation before computing W and H.

And though SVD provided the motivation for the model A =
W H’, we can use the model more generally, i.e. without assum-
ing W = UX%5 and H' = x5V,

For example, one approach is to minimize

1A= WH'|?+ X|WI[* + pl [ H|? (15.18)

again in the spirit of Chapter 12, with shrinkage parameters A
and p. The computation is made much easier via an alternat-
ing least squares scheme. One first holds H fixed, minimizing
Equation 15.18 with respect to W. In effect, this is ridge re-
gresssion, with the matrix W playing an analogous role to the
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assumption is not an issue, though,
as recommender systems methods
tend to be ad hoc rather that formal.



unknown coefficients vector in ridge. Then in the second itera-
tion, the roles are reversed, with H’ now taken as the unknown
coefficients vector, and so on.

15.10 Using SVD to Gain Insight into Ridge
Regression

Consider once again Equation 15.8, or better, Equation 12.2. It
turns out that SVD gives us more detailed information of how
ridge regression shrinks estimated regression coefficients.

Writing as usual A = UXV’, with A of size n X p and with
¥ = diag(oy,...,0,), some algebraic manipulation yields the
following equation for the estimated coefficients vector:

o2

by = zgj>0vjﬁﬂvugs (15.19)
J

where u; and v; are column j of U and V, as well as an expres-
sion for the vector of fitted “Y” values,

2

o2
— J /
Ab = Eaj>00"72- AQujujS (15.20)

These two equations form great examples of the power of
SVD:

e Equation 15.19 gives an explicit formula for the vector of
estimated coefficients b as a function of \. Without it, we
would need to do the matrix inversion in Equation 12.2,
once for each value of A, potentially a very slow process.

e Ridge does not shrink the coefficients uniformly. Equa-
tion 15.20 tells us how it works. The quantity

o2

—J <1
032-—|—>\2 -
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gives us a proportional shrinkage factor. Of course, non-
ridge corresponds to A = 0, so the shrinkage factor is in
comparison to non-ridge. Smaller values of o, give more
shrinkage.

But Equation 15.20 not only gives us insight as to the
amount of shrinkage but also its direction. Essentially, the
u,; are the Principal Components of our data, as follows.

A Your Turn problem in Chapter 4 has the reader derive
the relation

Cov(X) = E(XX') — (EX)(EX)’

If we center and scale our variables, this becomes

Cov(X)=E(XX')

The sample-data based estimate is
1
—AA
n

But we found earlier that the eigenvectors of AA” are the

B
u].

So, we have:

Ridge shrinks the vector of fitted “Y” values
more in the directions of the Principal Compo-
nents of our data.

15.11 SVD As a Foundation for the Four

Fundamental Subspaces

Recall the four subspaces discussed in Chapter 11. We can
quickly obtain much information about them from the SVD.

Let u; and v; denote the colums of U and V. Then:

e Uy,...,u, is an orthonormal basis for C(A)
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o u .y U,, is an orthonormal basis for K(A)

410
e Vy,...,v, is an orthonormal basis for R(A)

* U.i1,..., U, is an orthonormal basis for NV (A)

15.12 Your Turn

Your Turn: Write an R function will call form

getLowRank (A, lowrank)

that uses SVD to find the best approximation to the matrix A
of rank lowrank.

Your Turn: Our equation Equation 3.6 resulted from replac-
ing one row (the last, but could have been any) by all 1s, with a
corresponding change on the right-hand side. But now that we
have pseudoinverses at our disposal, we could add a row rather

than replacing a row:
P (0
1 )77\

where 1 on the left side means a row of 1s, 0 on the right side
is a column of 0s, and 1 on the right side means the scalar 1.

Write an R function with call form

findNuPseudoInv(p)

to implement this approach. Here p is a Markov transition
matrix. Try your code on a couple of examples.

Your Turn: Fill in the missing algebraic steps in Equa-
tion 15.20. Hints: Use the fact that U and V are orthogonal
matrices, and the fact that (CD)™! = D71C~! for invertible
matrices C and D.

Your Turn: Consider a diagonal matrix G = diag(c, ..., c,),
with the ¢; being positive numbers. Show that
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Gt = diag(cy, ..., c,) (15.21)

i.e. that in this case U and V are identity matrices.
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16 A Deeper Look at
Overfitting
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1 Goals of this chapter:

We have mentioned the concept of “overfitting” occasion-
ally in previous chapters. It has always been an issue
in statistics, but in recent years it has become an acute
problem as datasets with very large number of predictors
p, and old assumptions are now being questioned. This
chapter presents an up-to-date view of the topic, and as
usual, linear algebra plays a key role.

16.1 Motivating Example

Classically, statistics and ML books have stated that, for fixed
number of data points n, the graph of predictive accuracy
against number of predictor variables p roughly has a U-shape,
concave up. Starting at p = 1 and then increasing p, we achieve
better and better predictive power until we reach the minimum
point of the U; then adding further predictors degrades perfor-
mance.

We wish to explore this notion on the Million Song dataset from
Section 12.2. Here “Y” is the year of release of a song, stored
in the first column with label V1. “X” is a set of 90 audio
measurements. In the version of the dataset used here, we have
5000 rows.

We ran code like this:

sapply(seq(10,90,10) ,function(p)
mean(replicate (500,
geML: :qeLin(yr5000[1:150,1:p], 'V1')$testAcc
)))

Here we are running a linear model on the first 150 rows of
the dataset (i.e. n = 150), and the first p columns, so that
p = 10,20,...,90. Since qeML functions automatically form
holdout sets, we obtain the accuracy value, Mean Absolute Pre-
diction Error. And since the holdout set is randomly chosen,
we do this 500 times. We graph the result using gePlotCurves
(which does smoothing).
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Figure 16.1: U shapes

What do we see here?

e The graphs are indeed U-shaped, albeit often shallower

than the typical pictures shown in books.

e The larger the value of n,

— the lower the curve (better prediction accuracy), and

— the larger the value of the best p (optimal to use

more predictors)

e Some are half-U’s, indicating it’s best to use all variables

(large n) or one or two (small n).
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16.2 Interpolation Point

Consider a linear regression model, for convenience say with
no 3, term. As p increases, eventually it becomes equal to n,
the number of rows. When that happens, we get a “perfect”
fit: Our line, plane or hyperplane will pass through every data
point, and Equation 5.7 will be 0. Just think of the case n = 2,
p = 1, now with a 3, term: Two points in R?, through which
we can draw a line passing exactly through them.

This value of p is thus called the interpolation point, viewed
classically as follows.

e Of course, setting p to the interpolation point would be
a terrible fit, unable to predict new data well; we are at
the right-hand end of the U.

o And since we already have reached a “perfect” fit, there
would be no point in increasing p any further (using a
pseudoinverse).

So, pictures of overfititng in books had p stop at n. But wow,
were they wrong!

16.3 Double Descent

Though the prevailing wisdom used to be that, as noted above,
there is no point in trying values of p even near n, let alone
beyond n, it turns out that in some cases, the best value of p
is in fact larger than n.

As a first step to seeing this, consider the following code:

overfit <- function(nreps,n,maxP)

{

require(qeML)

load('YearData.save') # 500K Million Song data
nas <- rep(NA,nreps*(maxP-1))

# record p, Mean Absolute Prediction Error
outdf <- data.frame(p=nas,mape=nas)
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rownum <- 0O
for (i in 1:nreps) {
idxs <- sample(l:nrow(yr),n)
trn <- yr [idxs,]
tst <- yr[-idxs,]
for (p in 2:maxP) {
rownum <- rownum + 1
out<-gePolyLin(trn[,1:(p+1)],
'V1',2,holdout=NULL)
preds <- predict(out,tst[,-1])
mape <- mean(abs(preds - tst[,1]))
outdf [rownum,1] <- p
outdf [rownum,2] <- mape
print (outdf [rownum,])

outdf

z <- overfit(10,250,30)
w <- tapply(z$mape,z$p,mean)
plot (w)

This code tries values of p up to maxP but one must note that
we are fitting quadratic models. For any given value of p, the
number of columns after polynomial expansion will be much
larger. Consider this code:

> u22 <- gePolyLin(yr[1:100,1:23],'V1',deg=2)
P > N. With polynomial terms and interactions, P is 265.
> u22 <- gePolyLin(yr[1:100,1:22],'V1',deg=2)
P > N. With polynomial terms and interactions, P is 246.

So p = 21 will upon polynomial expansion produce 246 columns
while p = 22 will produce 265. We won’t hit 250 exactly, but
the interpolation point will be in this range.
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Figure 16.2: U shapes

After the interpolation point, we see another U! Hence the name
double descent. This introduces the concept, but the big news
is:

The minimum of the second U is sometimes lower
than that of the first. In other words, it can pay to
overfit!

Let’s see how linear algebra plays a role in explaining how dou-
ble descent can occur..
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16.4 Plausibility of Double Descent: the
Minimum Norm Solution

In an overdetermined linear system (p > n) such as Equa-
tion 15.8, there are many solutions. Our qePolyLin function
calls regtools::penrosePoly. An advantage of Moore-Penrose
is that it gives us the minimum norm solution. We’ll discuss
the significance of this for Double Descent shortly, but let’s
prove it first.

16.4.1 Proof of the minimum-norm property

We will need this:

Theorem 16.1 (Multiplication by an Orthogonal Matrix Pre-
serves Norm). For an orthogonal matriz M and a vector w,
[|Mwl]| = [|w]].

Proof. See the Your Turn problem below. O

Theorem 16.2 (The Moore-Penrose Solution Is Min-Norm).
Consider an m X n matriz B and vector q of length m. Of all
solutions x (of length n) to

Bx =q (16.1)
the Moore-Penrose solution minimizes ||x||.

In our linear regression context Equation 15.8, B= A"A, x = b
and ¢ = A’S.

Proof. Again, write

B=UXV’,

where U is m xn and ¥ and V are n x n. (For our discussion of
overfitting, we will primarily be interested in the case n > m.)
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Consider the residual sum of squares

1Bz —q* = [[USV'z — g (16.2)

SO

1Bz —q|* = ||[U(ZV'z — U'q)||” (16.3)

since UU’ = 1.

From Theorem 16.1 we can remove the factor U in Equa-
tion 16.3, yielding

||Bx — q||* = ||XV'x — U'q||? (16.4)

Rename V’x to w and U’q to s:

1Bz — q* = [|Zw — s||? (16.5)
So, instead of finding = to minimize the residual sum of squares

|| Bz — q||?, we've (temporarily) changed the problem to that of
finding w to minimize

|| Zw — s|)? (16.6)
This version of the original problem is more easily solved, since

we are dealing with a diagonal matrix. Setting the derivative
of Equation 16.6 with respect to w to 0, we have

2w =1YXs

Thus (illustrating for B of rank r = 2)

o 00 Zl zl
0 o9 O (2) _ 8
0 0 0 -

0 0
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(Due to the structure of 3 here, it doesn’t matter what w,,i > r
is; let’s make them 0s.)

So we see that

I
w, =—,t=1,..,r
0;

In other words, making use of Equation 15.21,
w=X"s
Recalling that V'z = w and U’q = s, we have
z=Vuw (16.7
— VX*s (16.8

= VS+U'q (16.9
(16.10

Wrapping up, we have

x=VXtU'q

Exactly the Moore-Penrose inverse!

(] O

16.4.2 Connection to Double Descent

First, consider the minimum norm solution z,,;, in our last
section, with p > n, i.e. post-interpolation. Intuitively, shorter
solutions have less variability, i.e. smaller variance. Moreover,
all the solutions have a 0 residual sum of squares, so why not
take the one with smaller variance? It is thus plausible that
Z i Might do better than the value of x we obtain at interpo-
lation, hence a downward trend in the curve of predictive ac-
curacy against p. On the other hand, as p grows even further,
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x has more and more components, and likely that minimum-
norm x will grow in length at some point, causing an increase
in variance, hence the typical U-shape — as our second U.

In addition, it can be shown that if gradient descent is used to
minimize the least-squares problem, the tendency is that the
result will be of minimum norm.

16.5 Plausibility of Double Descent: the
Condition Number

We briefly mentioned the condition number of a square matrix
A back in Section 13.7, the ratio of the maximal and minimal
eigenvalues. High values suggest problems of multicollinear-
ity.

If A is nonsquare, as in our setting in this chapter, one can
apply the same criterion to AA’. Then we can go through the
same exercise as above, starting with p = 1, i.e. using only the
first column of A, then adding more and more columns. It turns
out that if we graph condition number against p, we again see
Double Descent behavior! And again, the peak will occur at
the interpolation point.

Here is the code, run on the Million Song data:

cn <-
function(a)
{
aap <- a %*% t(a)
evs <- eigen(aap)$values
max(evs) / min(evs[evs > 1.0e-02])

u <- seq(55,85,1)
z <- sapply(u,function(p) cn(yr[1:75,1:p]))
plot(u,z,cex=0.5)
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Figure 16.3: Condition number

There it is, a peak at n = p.

Now, how might this relate to the original (accuracy vs. p Dou-
ble Descent problem? Recall that a large condition number
indicates multicollinearity, which in turn causes high variance
in 8, thus impaired predictive ability.

16.6 Your Turn

Your Turn: Show that for an orthogonal matrix M and a
vector w, ||Mw|| = ||wl|.

Your Turn: Using properties of matrix rank, show that if
p+ 1 > n in Equation 5.12, the inverse will not exist.
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17 Attention
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1 Goals of this chapter:

The emergence of Large Language Models (LLMs) really
startled the general public, leading to an explosion of pub-
lic attention to the field. In turn, the pivotal research pa-
per behind the success of LLMs was Attention Is All You
Need, by Ashish Vaswani et al, 2017. Actually, the math-
ematical operation called attention is rather simple in its
foundation. This approach is in turn related to material
that has arisen here in earlier chapters. Here we explore
the basics of this idea.

17.1 Dot Product as a Measure of Similarity

As discussed in Section 12.1.1, the row 4, column j element of
the matrix A’ A in Equation 5.10 is a measure of the strength
of relation between predictor variables i and j. And since that
matrix element is the dot product between rows ¢ and j, we see
that dot products serve as measures of similarity.

Recall the key role of dot products in Section 12.14, with kernels
acting like generalized dot products. One of the reasons dot
products are so important is that they serve as measures of
similarity.

This point also arises in recommender systems. Recall Sec-
tion 2.10:

In order to assess interuser similarity of the nature
described above, we might form a matrix , as follows.
There would be 943 rows, one for each user, and
1682 columns, one for each movie. The element in
row , column would be the rating user gave to movie
. Most of the matrix would be Os.

Determining the similarity of users becomes a mat-
ter of measuring similarity of rows of the matrix.
This paves the way to exploiting the wealth of
matrix-centric methodology we have developed in
this book.
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And how might this similarity between users be measured? By
dot product, of course!

17.2 Reuvisiting the Linear Model

Before going to the LLM usage of attention, it will be instruc-
tive to view the familiar linear regression model in terms of
attention (aside from the point regarding A’ A above). Here we
follow Ordinary Least Squares as an Attention Mechanism, by
Philippe Goulet Coulombe, 2025.

One again, consider the model

E(S|A) = Ap
whose least-squares solution is

8= (A’A)*lA’S
where

e A, n X p,is our predictor variable data, column 7 contain-
ing predictor ¢, “X”,

e S, n x 1, is our response variable data, “Y”, and

e 3, p x1,is a population vector, with sample estimate as
above.

Alluding to the fact that fitting a model is often referred to as
“training” the model, below we will use the notation A and
Y, qin for A and S.

train

After computing 3, we are ready to predict new cases! Say
we have m of them, stored in the m x p matrix 4,.,. Our
predictions are

Y

preds — Anewﬁ = Anew(A/A)ilA:trainY;ram

As in Equation 14.5, write
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A’A = PDP’

At this point, we turn to the notion of the “square root” of a
symmetric matrix, introduced in Section 14.6. Write

Y, reds — (A PD_O.S) (D_O.E)P/A?/frain) Y;Tain

p new

SO

Yoreas = (FrewFirain) Yirain (17.1)
where F, ., and F}, ., are m X p and p X n.
Things to note about Equation 17.1:
o The matrix F, ., F}, . transforms our training “Y” val-

ues into predicted “Y” values.

e Each predicted “Y” value is a linear combination of the
training “Y” values.

e Thus the predicted values are weighted sums of the train-
ing values.

o The weights matirx F,, ., FY, .., factors neatly into a prod-
uct of a matrix involving the new data and a matrix in-

volving the training data.

These last two bullet points share the foundation of the atten-
tion concept.

17.3 Attention

Though the concept of attention is simple, the application can
be quite complex. Our presentation here will merely provide
an overview.
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17.3.1 Basic structures

o There is a query matrix (), analogous to F,,,,, .

o There is a keys matrix K analogous to F,

rain"

o There is a values matrix V analogous to Yy, i,

Major differences from the last section:

e The data in Q and K are ordered sequences, such as words
within a sentence, genes within a chromosome or daily
stock market prices in a time series.

e Rather than predicting a numerical quantity, these appli-
cations are driven by probabilities of sentences or other
sequences.

The fundamental computations consist of dot products of rows
of Q and K.

17.3.2 Iterative computation

The word “attention” alludes to the weighting. Heavier weights
are given to more important parts of the input sequence.

Recall that in motivating the least-squares approach to estima-
tion for the linear regression model in Section 5.1.1, we said,
“Pretend for a moment that we don’t know, say, Cyg,” the lat-
ter being one of the “Y” values in our training set. We predict
that value with our model, and evaluate our error.

The idea is the same with LLMs, though as with most machine
learning algorithms, the computation is iterative. We take a
query from our training set, and predict “Y” value using our
current weights. At each iteration, the current guesses for prob-
abilities in V are updated.

(As noted, this involves clever updating algorithms, using
tremendous amounts of computation, whose details are beyond
the scope of this book.)
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17.3.3 Next-token prediction

The items in a sequence, say words in a sentence or genes in
a chromosome, are called tokens. During training, we step
through a query sequence, one token at a time. At each step,
we predict the next token according to which would make the
sentence most probable, given our current guess for V. After
building up sequences in this manner, we build up a candidate
full sequence. After doing this step for all sequences in Q, we
check to see how well we predicted. We then use this to update
all in our next iteration.

The idea of next-token prediction is easiest to understand in an
application like translating English test to, say, French. Here
we input a sentence in English, and output a sentence in French;
our output is the one determined to have the highest probabil-

ity.
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