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Author bio

In developing/choosing a model, we may perform simulation
or cross-validation, with many replicates, in order to compare
multiple algorithms, multiple sets of hyperparameters and so on.
To make our analysis statistically valid, we can form confidence
intervals (CIs).
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However, if we form many CIs, say at 95% level each, their
overall coverage probability will be much lower than 95%. This
is the multiple inference (MI) or multiple comparisons problem,
sometimes also called simultaneous inference. In this document,
we discuss remedies in the model-selection context. (General
application of MI methods will be presented as well.)

For a good general presentation of
MI methods, see Jason Hsu, Multiple
Comparisons: Theory and methods.

The MI problem has been extremely well studied, resulting in
myriad methods. Here we employ two of the most well-known
methods, the Bonferroni Inequality and Scheffe’s Method.

Note that our focus is on CIs, not hypothesis tests. We strongly
recommend against using the latter in any statistical analy-
sis.

Motivating Example

library(qeML)
data(svcensus)
head(svcensus)

This is US census data. Let’s predict gender, using logistic
regression, random forests, XGBoost, and k-NN with 2 values
of k..

logitAcc <- qeLogit(svcensus,'gender')$testAcc
rfAcc <- qeRFranger(svcensus,'gender')$testAcc
xgbAcc <- qeXGBoost(svcensus,'gender')$testAcc
knn25Acc <- qeKNN(svcensus,'gender',k=25)$testAcc
knn200Acc <- qeKNN(svcensus,'gender',k=200)$testAcc
c(logitAcc,rfAcc,xgbAcc,knn25Acc,knn200Acc)
# 0.263 0.254 0.263 0.256 0.236

Several points to note:

• The qeML functions automatically do cross-validation,
via an argument holdout, indicating our desired size of
test set. Here we take the default value.
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• The functions return S3 objects, one of whose components
is prediction accuracy on the test data, testAcc, in this
case the probability of misclassification..

• Since the holdout set is random, we should be performing
each of the calls many times, and compute averages, say
logitAccs <-

replicate(50,qeLogit(svcensus,'gender')$testAcc)
rfAccs <-

replicate(50,qeRFranger(svcensus,'gender')$testAcc)
xgbAccs <-

replicate(50,qeXGBoost(svcensus,'gender')$testAcc)
knn25Accs <- replicate(50,qeKNN(svcensus,'gender',k=25)$testAcc)
knn200Accs <- replicate(50,qeKNN(svcensus,'gender',k=200)$testAcc)
accs <- cbind(logitAccs,rfAccs,xgbAccs,knn25Accs,knn200Accs)
colMeans(accs)
# 0.24476 0.26124 0.25828 0.25194 0.24844

We might wish to find a CI for each of the 5 quantities, or for
each difference, i.e. c(5,2) = 10 CIs. With more algorithms,
and especially with more hyperparameter combinations, our
CI count could easily be several dozen or more, raising MI
concerns.

Review: Confidence Intervals, Standard Errors
We follow the standard model in
statistics in which one’s data are
considered a sample from some
population, actual or conceptual. In
the ML community, the term
data-generating process is analogous.
Also note the “hat” notation, ‘^’
meaning “estimate of.”

To set the stage, let’s review the statistical concepts of confi-
dence interval and standard error. Say we have an estimator ̂𝜃
of some population parameter 𝜃, e.g.
𝑋̄ for a population mean 𝜇.

Loosely speaking, the term standard error of ̂𝜃 is our estimate
of √𝑉 𝑎𝑟( ̂𝜃). More precisely, suppose that ̂𝜃 is asymptotically
normal/Gaussian. The standard error is an estimate of the
standard deviation of that normal distribution. For this reason,
one sometimes writes 𝐴𝑉 𝑎𝑟( ̂𝜃) rather than 𝑉 𝑎𝑟( ̂𝜃).
In the familiar case in which 𝜃 is a population mean and ̂𝜃 is
the sample mean,
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𝑠.𝑒.( ̂𝜃) = 𝑠√𝑛 (1)

where 𝑠2 is the sample variance. and where we denote the
standard error of ̂𝜃 by s.e.( ̂𝜃).

Standard statistics courses begin
with “exact” CIs, using the
t-distribution, which assumes 𝑋 has
a normal dstr. But nothing in
practice is normally distributed; no
one is 80 feet tall, for instance

An approximate 95% confidence interval (CI) for 𝜃 is then

̂𝜃 ± 1.96 s.e.( ̂𝜃)

The 95% figure means that of all possible samples of the given
size from the population, 95% of the resulting confidence in-
tervals will contain 𝜃. In many cases, the 95% figure is only
approximate, stemming from a derivation that uses the Cen-
tral Limit Theorem.

In general, for confidence level 1 − 𝛼, replace 1.96 by 𝑧𝛼, the
1 − 𝛼/2 quantile of the N(0,1) distribution, Then our CI is

̂𝜃 ± 𝑧𝛼s.e.( ̂𝜃) (2)

Examples of finding 𝑧𝛼:

> qnorm(0.975)
[1] 1.959964 # for 95% CI
> qnorm(0.025) # N(0,1) is symmetric around 0
[1] -1.959964
> qnorm(0.995) # for 99% CI
[1] 2.575829

Example: Logistic regression coefficients

suppressPackageStartupMessages(library(qeML))
data(svcensus)
logitOut <- qeLogit(svcensus,'gender',yesYVal='female')
summary(logitOut$glmOuts[[1]])
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Call:
glm(formula = yDumm ~ ., family = binomial, data = tmpDF)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.635e-01 9.435e-02 -5.972 2.34e-09 ***
age 5.060e-03 1.543e-03 3.279 0.001043 **
educ16 -5.458e-01 1.178e-01 -4.634 3.60e-06 ***
educzzzOther -8.017e-02 4.359e-02 -1.839 0.065867 .
occ101 -3.635e-01 4.789e-02 -7.590 3.20e-14 ***
occ102 -3.661e-01 4.484e-02 -8.166 3.19e-16 ***
occ106 3.650e-01 9.854e-02 3.704 0.000212 ***
occ140 -8.998e-01 1.052e-01 -8.550 < 2e-16 ***
occ141 -1.461e+00 7.327e-02 -19.942 < 2e-16 ***
wageinc -6.181e-06 5.237e-07 -11.802 < 2e-16 ***
wkswrkd 9.519e-04 1.281e-03 0.743 0.457515
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 21240 on 19089 degrees of freedom
Residual deviance: 20339 on 19079 degrees of freedom
AIC: 20361

Number of Fisher Scoring iterations: 4

The qeLogit function is a wrapper
for glm. In order to accommodate
more than two classes, it performs
multiple glm runs storing their
outputs in an R list glmOuts.

So a 95% CI for the coefficient for occupation 141 is

−1.44 ± 1.96 × 0.07 (3)

The Bonferroni Inequality

This one is the simplest and most convenient MI method. The
derivation is instructive.

Suppose 𝐴 and 𝐵 are events defined on some probability space.
Then
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𝑃(𝐴 or 𝐵) ≤ 𝑃(𝐴) + 𝑃(𝐵) (4)

Say we form 95% CIs for two different quantities, so that each
has a probability 5% of being “wrong,” i.e. of failing to contain
its corresponding population parameter. Set 𝐴 to be the event
that the first CI fails in that regard, and define 𝐵 similarly for
the second CI. Then Equation 4 tells us that the probability of
at least one of the CIs being wrong is at most 10%. In other
words, our overall confidence level is at least 90%.

Moreover: Presumably the reason we set the original CI levels
to 95% was that we are comfortable with an error rate of 5%.
Accordingly, we may wish to have an overall rate of 5% – again,
meaning that we are 95% confident that both CIs are correct –
rather than the 90% shown above. The same reasoning as above
shows that we can achieve overall 95% confidence by making
each of the two individual CIs at the 97.5% level.

So we could form intervals for say both occ140 and occ141
above.

Of course, this MI benefit comes at a price:

qnorm((1-0.975)/2)
# -2.241403

So, the 1.96 in Equation 2 now becomes 2.24, forcing us to form
wider intervals.

If in Equation 4 one replaces 𝐵 by 𝐵1 or 𝐵2, that extends the
relation from two events to three, and so on.

For events 𝐴1, ..., 𝐴𝑚,

𝑃(𝐴1 or ... or 𝐴𝑚) ≤
𝑚

∑
𝑖=1

𝑃(𝐴𝑖)
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Scheffe’s Method, Background Prep

The Bonferroni Method is fine for forming a few CIs, but is
impractical if one needs many. The coefficient for forming a
CI – 1.96 and 2.24 above – becomes too large. By contrast, the
Scheffe’ Method actually gives us the freedom to form infinitely
many CIs.

Definitions

The term covariance is overloaded, with both scalar and matrix
versions.

• The covariance between random variables 𝑈 and 𝑉 is

𝐶𝑜𝑣(𝑈, 𝑉 ) = 𝐸[(𝑈 − 𝐸𝑈)(𝑉 − 𝐸𝑉 )]

• The covariance matrix of a random vector 𝑋 has as its
row 𝑖, column 𝑗 element the scalar covariance between
elements 𝑖 and 𝑗 (elements denoted here by superscipts):

𝐶𝑜𝑣(𝑋)𝑖𝑗 = 𝐶𝑜𝑣(𝑋(𝑖), 𝑋(𝑗))

One can show that

𝐶𝑜𝑣(𝑋) = 𝐸[(𝑋 − 𝐸𝑋)(𝑋 − 𝐸𝑋)′] (5)

where ’ denotes matrix transpose and vectors are column
vectors by default. Here 𝐸𝑋 is a vector whose element 𝑖
is 𝐸𝑋(𝑖).
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Estimation via sample analog (“plug-In” estimates)

Denote our data by 𝑋1, ..., 𝑋𝑛. Equation 5 is the average value
of (𝑋−𝐸𝑋)(𝑋−𝐸𝑋)′ in the population, and its sample analog
is the average value in the sample, i.e.

𝐶𝑜𝑣(𝑋) = 1
𝑛

𝑛
∑
𝑖=1

(𝑋𝑖 − 𝑋̄)(𝑋𝑖 − 𝑋̄)′ (6)

where

𝑋̄ = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖

In R, say we have a data frame or matrix A, one data point
per row. Then cov(A) computes Equation 6.

Note too that in analogy with Equation 1,

𝐶𝑜𝑣(𝑋̄) = 1
𝑛𝐶𝑜𝑣(𝑋)

Estimation via parametric model: the R vcov function

The vcov function is an R generic
function, playing a similar role to
print, plot, summary and so on.
Many R statistical operations have
generic functions available to apply
to their output, including say glm.
When we make the call
vcov(glmOut), the R interpreter
sees that glmOut is of class “glm”
and thus transfers the call to the
class-specific function,
vcov.glm(glmOut).

Parametric statistical models, e.g. linear and logistic regres-
sion, parametric analysis of contingency tables and so on, are
smooth functions of sums, and thus asymptotically normally
distributed. Their covariance matrices arise as part of the
derivation, and are accessible for many R estimators via the
vcov function, such as in our logit model above:

vcov(logitOut$glmOuts[[1]])

(Intercept) age educ16 educzzzOther
(Intercept) 8.901692e-03 -9.775752e-05 -1.111155e-03 -1.731084e-03
age -9.775752e-05 2.381474e-06 -7.749125e-06 1.871031e-06
educ16 -1.111155e-03 -7.749125e-06 1.387431e-02 1.410175e-03
educzzzOther -1.731084e-03 1.871031e-06 1.410175e-03 1.899972e-03
occ101 -1.254284e-03 3.187716e-06 1.067054e-04 2.579301e-05
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occ102 -1.446238e-03 6.654231e-06 7.911654e-05 2.291348e-04
occ106 -1.108154e-03 3.163325e-06 9.248541e-05 6.536398e-05
occ140 -1.337016e-03 5.544354e-06 -8.487479e-05 1.389349e-04
occ141 -8.735317e-04 -8.070922e-06 1.603566e-05 1.842955e-04
wageinc 3.526441e-09 -1.062608e-10 -4.916852e-10 3.208639e-09
wkswrkd -5.998181e-05 1.270412e-07 -5.947216e-07 -2.449374e-06

occ101 occ102 occ106 occ140
(Intercept) -1.254284e-03 -1.446238e-03 -1.108154e-03 -1.337016e-03
age 3.187716e-06 6.654231e-06 3.163325e-06 5.544354e-06
educ16 1.067054e-04 7.911654e-05 9.248541e-05 -8.487479e-05
educzzzOther 2.579301e-05 2.291348e-04 6.536398e-05 1.389349e-04
occ101 2.293429e-03 1.058975e-03 1.045571e-03 1.052902e-03
occ102 1.058975e-03 2.010277e-03 1.073871e-03 1.110842e-03
occ106 1.045571e-03 1.073871e-03 9.710788e-03 1.063072e-03
occ140 1.052902e-03 1.110842e-03 1.063072e-03 1.107483e-02
occ141 1.038412e-03 1.090634e-03 1.047558e-03 1.068253e-03
wageinc -7.285088e-10 -3.738745e-09 -8.642752e-10 -2.361078e-09
wkswrkd 2.156195e-06 2.614042e-06 -1.767986e-06 1.509317e-06

occ141 wageinc wkswrkd
(Intercept) -8.735317e-04 3.526441e-09 -5.998181e-05
age -8.070922e-06 -1.062608e-10 1.270412e-07
educ16 1.603566e-05 -4.916852e-10 -5.947216e-07
educzzzOther 1.842955e-04 3.208639e-09 -2.449374e-06
occ101 1.038412e-03 -7.285088e-10 2.156195e-06
occ102 1.090634e-03 -3.738745e-09 2.614042e-06
occ106 1.047558e-03 -8.642752e-10 -1.767986e-06
occ140 1.068253e-03 -2.361078e-09 1.509317e-06
occ141 5.369049e-03 -2.536243e-09 2.676902e-06
wageinc -2.536243e-09 2.742458e-13 -3.285020e-10
wkswrkd 2.676902e-06 -3.285020e-10 1.641559e-06

Keep in mind that our 𝜃 here is 𝛽, the vector of regression
coefficients. So, the covariance matrix printed out here is the
estimated asymptotic covariance matrix of ̂𝛽. So for instance
the estimated covariance between ̂𝛽𝑜𝑐𝑐101 and ̂𝛽0 is about -
0.00127.
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The multivariate normal distribution family

This is an extension of the ordinary normal family, with param-
eters mean vector and covariance matrix. Again, “there is no
such animal” in practice, but fortunately there is a multivari-
ate version of the Central Limit Theorem, which makes it all
work.

The chi-square family of probability distributions

Some readers may have seen this distribution family in the con-
text of goodness-of-fit tests. Here is the technical definition:

The random variable 𝑊 is said to have a chi-square distribution
with 𝑘 degrees of freedom if 𝑊 has the same distribution as

𝑍2
1 + ... + 𝑍2

𝑘

for independent 𝑍𝑖 having N(0,1) distributions.

So, unlike the 2-parameter family of normal distributions, chi-
square has just 1 parameter, the degrees of freedom. Note too
that it is not symmetric.

Key theorem

Say the random vector 𝑋 of length 𝑝 is multivariate normal,
with mean vector 𝜈 and (invertible) covariance matrix Λ. Then
the quantity

(𝑋 − 𝜈)′Λ−1(𝑋 − 𝜈)

has a chi-square distribution with 𝑝 degrees of freedom.

If 𝜈 and Λ are estimated from the sample as above, the distri-
bution is approximate.

10



Scheffe’ CIs

Say ̂𝜃 is an asymptotically 𝑘-dimensional normal es-
timator of some population value 𝜃. Denote the
covariance matrix in that asymptotic distribution
by Σ, assumed invertible, with estimate Σ̂. Denote
the sample size by 𝑛. Then for any constant, com-
patible vector 𝑎, form the interval

𝑎′ ̂𝜃 ± √𝑑𝛼𝑎′Σ̂𝑎 = 𝑎′ ̂𝜃 ± √𝑑𝛼 𝑠.𝑒.(𝑎′ ̂𝜃) (7)

where 𝑑𝛼 is the upper 𝛼 quantile of the chi-square
distribution with 𝑘 degrees of freedom.

Then the intervals in Equation 7 hold simultane-
ously at the approximate (1 − 𝛼) confidence level.

In the case
𝑎 = (0, 0, 0, 0, 1, −1, 0, ..., 0), the
sum of the elements of 𝑎 is 0, known
as a contrast. If one is willing to
restrict one’s analysis to contrasts,
the degrees of freedom will decline
by 1, making for slightly narrower
CIs.

The values of 𝑎 are chosen according to the analyst’s in-
terests. For instance, in our logit model above, we could
take 𝑎 = (0, 0, 0, 0, 1, 0, ..., 0) if we want a CI for 𝛽𝑜𝑐𝑐101, or
𝑎 = (0, 0, 0, 0, 1, −1, 0, ..., 0) if we want a CI for the difference
𝛽𝑜𝑐𝑐101 − 𝛽𝑜𝑐𝑐102. In any event, the key point is that we will be
forming at least several of these CIs, if not many.

Example

Let’s continue the example in Section .

logitAccs <-
replicate(50,qeLogit(svcensus,'gender')$testAcc)

rfAccs <-
replicate(50,qeRFranger(svcensus,'gender')$testAcc)

xgbAccs <-
replicate(50,qeXGBoost(svcensus,'gender')$testAcc)

knn25Accs <- replicate(50,qeKNN(svcensus,'gender',k=25)$testAcc)
knn200Accs <- replicate(50,qeKNN(svcensus,'gender',k=200)$testAcc)
accs <- cbind(logitAccs,rfAccs,xgbAccs,knn25Accs,knn200Accs)
covaccs <- cov(accs)
xbar <- colMeans(accs)
covxbar <- covaccs / nrow(accs)
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d <- sqrt(qchisq(0.95,5)) # 5 degrees of freedom
# form CI for difference between logit and RF
a <- c(1,-1,0,0,0)
t(a) %*% xbar
# -0.01258
d * sqrt(t(a) %*% covxbar %*% a) # radius of CI
t(a) %*% xbar - d * sqrt(t(a) %*% covxbar %*% a)
t(a) %*% xbar + d * sqrt(t(a) %*% covxbar %*% a)
# CI is (-0.02174126,-0.003418737)

Again, note that we can form as many CIs this way as we want,
yet still retain an overall confidence level of at least 95%.

Impact of the Sampling Scheme

Again consider the code in Section . Since the random number
seed is not reset, each of the calls is using different training
sets and different test sets from each other. This makes them
statistically independent. The alternative would be to insert,
say

set.seed(9999)

before each of the calls:

set.seed(9999)
logitAccs <-

replicate(50,qeLogit(svcensus,'gender')$testAcc)
set.seed(9999)
rfAccs <-

replicate(50,qeRFranger(svcensus,'gender')$testAcc)
set.seed(9999)
xgbAccs <-

replicate(50,qeXGBoost(svcensus,'gender')$testAcc)
set.seed(9999)
knn25Accs <- replicate(50,qeKNN(svcensus,'gender',k=25)$testAcc)
set.seed(9999)
knn200Accs <- replicate(50,qeKNN(svcensus,'gender',k=200)$testAcc)
accs1 <- cbind(logitAccs,rfAccs,xgbAccs,knn25Accs,knn200Accs)
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Now each of the 5 fits will be to the same dataset.

Let’s call these two sampling schemes the Independent Scheme
and the Same Dataset Scheme.

Now, what are the pros and cons here?

Under the Same Dataset Scheme, the fact that each call oper-
ates on the same dataset seems appealing – say on the grounds
of “an apples to apples comparison.” And that intuition is sup-
ported by a closer look at the math, as follows.

Recall that

𝑉 𝑎𝑟(𝑉 − 𝑈) = 𝑉 𝑎𝑟(𝑉 ) + 𝑉 𝑎𝑟(𝑈) − 2𝐶𝑜𝑣(𝑈, 𝑉 ) (8)

Now apply that to our example above in which we compared
the random forest solution to logistic regression, setting

𝑎 < −𝑐(1, −1, 0, 0, 0)

The key point is since in the second scenario the various al-
gorithms are all applied to the same dataset, the results are
positively correlated. Equation 8 then tells us that under this
scheme, the standard error of the difference will be reduced,
relative to the independent sampling scheme.

Let’s take a look:

set.seed(9999)
logitAccs <-

replicate(50,qeLogit(svcensus,'gender')$testAcc)
set.seed(9999)
rfAccs <-

replicate(50,qeRFranger(svcensus,'gender')$testAcc)
set.seed(9999)
xgbAccs <-

replicate(50,qeXGBoost(svcensus,'gender')$testAcc)
set.seed(9999)
knn25Accs <- replicate(50,qeKNN(svcensus,'gender',k=25)$testAcc)
set.seed(9999)
knn200Accs <- replicate(50,qeKNN(svcensus,'gender',k=200)$testAcc)
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accs1 <- cbind(logitAccs,rfAccs,xgbAccs,knn25Accs,knn200Accs)
covaccs1 <- cov(accs1)
xbar1 <- colMeans(accs1)
covxbar1 <- covaccs1 / nrow(accs1)
t(a) %*% xbar # -0.01258
t(a) %*% xbar1 # -0.0117
d * sqrt(t(a) %*% covxbar1 %*% a) # 0.005706407
d * sqrt(t(a) %*% covxbar %*% a) # 0.009161263

So use of the Same Dataset Scheme cut the radius of the CI by
almost half!

Now, what about the Independent Scheme? Note first that the
analysis in Section is valid, but there is an opportunity cost
(though probability small) in not taking advantage of the inde-
pendence. We could do the latter by setting the off-diagonal
elements of the covariance matrix to 0s.

Notes

• Some analysts may not consider MI to be a “problem.”
This is a philosophical issue, not pursued here, but we
note that the choice may depend on the application. A
medical research journal may require MI, say, whereas an
amateur stock market investor may not feel it’s necessary
for that type of data analysis.

• There is a bit of drama in this word contain in the state-
ment “95% of the resulting confidence intervals will con-
tain 𝜃.” Instead of saying the intervals contain 𝜃, why
not simply say 𝜃 is in the intervals? Aren’t these two
descriptions equivalent in terms of English?

Of course they are. But many instructors of statistics
classes worry that students will take the description based
on “in” to mean that 𝜃 is the random quantity, when in
fact the CI is random (random center, random radius)
and 𝜃 is fixed (though unknown). The instructors thus
insist on the more awkward phrasing “contain,” so as to
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avoid students misunderstanding. Indeed some instruc-
tors would contend that use of the word in is itself just
plain incorrect.

My own view is that in some cases the word in is clearer
(and certainly correct in any case), and that it is better
to add a warning about what is random/nonrandom than
engage in awkward phrasing.
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